Goto

Collaborating Authors

 Jacobsen, Jörn-Henrik


Flexibly Fair Representation Learning by Disentanglement

arXiv.org Artificial Intelligence

We consider the problem of learning representations that achieve group and subgroup fairness with respect to multiple sensitive attributes. Taking inspiration from the disentangled representation learning literature, we propose an algorithm for learning compact representations of datasets that are useful for reconstruction and prediction, but are also \emph{flexibly fair}, meaning they can be easily modified at test time to achieve subgroup demographic parity with respect to multiple sensitive attributes and their conjunctions. We show empirically that the resulting encoder---which does not require the sensitive attributes for inference---enables the adaptation of a single representation to a variety of fair classification tasks with new target labels and subgroup definitions.


Conditional Generative Models are not Robust

arXiv.org Machine Learning

Class-conditional generative models are an increasingly popular approach to achieve robust classification. They are a natural choice to solve discriminative tasks in a robust manner as they jointly optimize for predictive performance and accurate modeling of the input distribution. In this work, we investigate robust classification with likelihood-based conditional generative models from a theoretical and practical perspective. Our theoretical result reveals that it is impossible to guarantee detectability of adversarial examples even for near-optimal generative classifiers. Experimentally, we show that naively trained conditional generative models have poor discriminative performance, making them unsuitable for classification. This is related to overlooked issues with training conditional generative models and we show methods to improve performance. Finally, we analyze the robustness of our proposed conditional generative models on MNIST and CIFAR10. While we are able to train robust models for MNIST, robustness completely breaks down on CIFAR10. This lack of robustness is related to various undesirable model properties maximum likelihood fails to penalize. Our results indicate that likelihood may fundamentally be at odds with robust classification on challenging problems.


Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness

arXiv.org Machine Learning

Adversarial examples are malicious inputs crafted to cause a model to misclassify them. Their most common instantiation, "perturbation-based" adversarial examples introduce changes to the input that leave its true label unchanged, yet result in a different model prediction. Conversely, "invariance-based" adversarial examples insert changes to the input that leave the model's prediction unaffected despite the underlying input's label having changed. In this paper, we demonstrate that robustness to perturbation-based adversarial examples is not only insufficient for general robustness, but worse, it can also increase vulnerability of the model to invariance-based adversarial examples. We mount attacks that exploit excessive model invariance in directions relevant to the task, which are able to find adversarial examples within the l ball. Excessive invariance is not limited to models trained to be robust to perturbationbased l -norm adversaries. Accordingly, we call for a set of precise definitions that taxonomize and address each of these shortcomings in learning.


Invertible Residual Networks

arXiv.org Artificial Intelligence

Reversible deep networks provide useful theoretical guarantees and have proven to be a powerful class of functions in many applications. Usually, they rely on analytical inverses using dimension splitting, fundamentally constraining their structure compared to common architectures. Based on recent links between ordinary differential equations and deep networks, we provide a sufficient condition when standard ResNets are invertible. This condition allows unconstrained architectures for residual blocks, while only requiring an adaption to their regularization scheme. We numerically compute their inverse, which has O(1) memory cost and computational cost of 5-20 forward passes. Finally, we show that invertible ResNets perform on par with standard ResNets on classifying MNIST and CIFAR10 images.


Excessive Invariance Causes Adversarial Vulnerability

arXiv.org Artificial Intelligence

One core idea of adversarial example research is to reveal neural network errors under such distribution shift. We show deep networks are not only too sensitive to task-irrelevant changes of their input, as is well-known from -adversarial examples, but are alsotoo invariant to a wide range of task-relevant changes, thus making vast regions in input space vulnerable to adversarial attacks. After identifying this excessive invariance, we propose the usage of bijective deep networks to enable access to all variations. We introduce metameric sampling as an analytic attack for these networks, requiring no optimization, and show that it uncovers large subspaces of misclassified inputs. Then we apply these networks to MNIST and ImageNet and show that one can manipulate the class-specific content of almost any image without changing the hidden activations. Further, we extend the standard cross-entropy loss to strengthen the model against such manipulations via an information-theoretic analysis, providing the first approach tailored explicitly to overcome invariance-based vulnerability. We conclude by empirically illustrating its ability to control undesirable class-specific invariance, showing promise to overcome one major cause for adversarial examples. Figure 1: All images shown cause a competitive ImageNet-trained network to output theexact same probabilities over all 1000 classes (logits shown above each image). The leftmost image is from the ImageNet validation set; all other images are constructed such that they match the non-class related information of images taken from other classes (for details see section 2.2).


i-RevNet: Deep Invertible Networks

arXiv.org Machine Learning

It is widely believed that the success of deep convolutional networks is based on progressively discarding uninformative variability about the input with respect to the problem at hand. This is supported empirically by the difficulty of recovering images from their hidden representations, in most commonly used network architectures. In this paper we show via a one-to-one mapping that this loss of information is not a necessary condition to learn representations that generalize well on complicated problems, such as ImageNet. Via a cascade of homeomorphic layers, we build the i-RevNet, a network that can be fully inverted up to the final projection onto the classes, i.e. no information is discarded. Building an invertible architecture is difficult, for one, because the local inversion is ill-conditioned, we overcome this by providing an explicit inverse. An analysis of i-RevNets learned representations suggests an alternative explanation for the success of deep networks by a progressive contraction and linear separation with depth. To shed light on the nature of the model learned by the i-RevNet we reconstruct linear interpolations between natural image representations.


Dynamic Steerable Blocks in Deep Residual Networks

arXiv.org Machine Learning

Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks.


Multiscale Hierarchical Convolutional Networks

arXiv.org Machine Learning

Deep neural network algorithms are difficult to analyze because they lack structure allowing to understand the properties of underlying transforms and invariants. Multiscale hierarchical convolutional networks are structured deep convolutional networks where layers are indexed by progressively higher dimensional attributes, which are learned from training data. Each new layer is computed with multidimensional convolutions along spatial and attribute variables. We introduce an efficient implementation of such networks where the dimensionality is progressively reduced by averaging intermediate layers along attribute indices. Hierarchical networks are tested on CIFAR image data bases where they obtain comparable precisions to state of the art networks, with much fewer parameters. We study some properties of the attributes learned from these databases.