Plotting

 Jackel, L. D.


Limits on Learning Machine Accuracy Imposed by Data Quality

Neural Information Processing Systems

Random errors and insufficiencies in databases limit the performance ofany classifier trained from and applied to the database. In this paper we propose a method to estimate the limiting performance ofclassifiers imposed by the database. We demonstrate this technique on the task of predicting failure in telecommunication paths. 1 Introduction Data collection for a classification or regression task is prone to random errors, e.g.


Limits on Learning Machine Accuracy Imposed by Data Quality

Neural Information Processing Systems

Random errors and insufficiencies in databases limit the performance of any classifier trained from and applied to the database. In this paper we propose a method to estimate the limiting performance of classifiers imposed by the database. We demonstrate this technique on the task of predicting failure in telecommunication paths. 1 Introduction Data collection for a classification or regression task is prone to random errors, e.g.


Learning Curves: Asymptotic Values and Rate of Convergence

Neural Information Processing Systems

Training classifiers on large databases is computationally demanding. It is desirable to develop efficient procedures for a reliable prediction of a classifier's suitability for implementing a given task, so that resources can be assigned to the most promising candidates or freed for exploring new classifier candidates. We propose such a practical and principled predictive method. Practical because it avoids the costly procedure of training poor classifiers on the whole training set, and principled because of its theoretical foundation. The effectiveness of the proposed procedure is demonstrated for both single-and multi-layer networks.


Learning Curves: Asymptotic Values and Rate of Convergence

Neural Information Processing Systems

Training classifiers on large databases is computationally demanding. Itis desirable to develop efficient procedures for a reliable prediction of a classifier's suitability for implementing a given task, so that resources can be assigned to the most promising candidates or freed for exploring new classifier candidates. We propose such a practical and principled predictive method. Practical because it avoids the costly procedure of training poor classifiers on the whole training set, and principled because of its theoretical foundation. The effectiveness of the proposed procedure is demonstrated for both single-and multi-layer networks.


Learning Curves: Asymptotic Values and Rate of Convergence

Neural Information Processing Systems

Training classifiers on large databases is computationally demanding. It is desirable to develop efficient procedures for a reliable prediction of a classifier's suitability for implementing a given task, so that resources can be assigned to the most promising candidates or freed for exploring new classifier candidates. We propose such a practical and principled predictive method. Practical because it avoids the costly procedure of training poor classifiers on the whole training set, and principled because of its theoretical foundation. The effectiveness of the proposed procedure is demonstrated for both single-and multi-layer networks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.