Plotting

 Ivanov, Dmitry


Personalized Reinforcement Learning with a Budget of Policies

arXiv.org Artificial Intelligence

Personalization in machine learning (ML) tailors models' decisions to the individual characteristics of users. While this approach has seen success in areas like recommender systems, its expansion into high-stakes fields such as healthcare and autonomous driving is hindered by the extensive regulatory approval processes involved. To address this challenge, we propose a novel framework termed represented Markov Decision Processes (r-MDPs) that is designed to balance the need for personalization with the regulatory constraints. In an r-MDP, we cater to a diverse user population, each with unique preferences, through interaction with a small set of representative policies. Our objective is twofold: efficiently match each user to an appropriate representative policy and simultaneously optimize these policies to maximize overall social welfare. We develop two deep reinforcement learning algorithms that efficiently solve r-MDPs. These algorithms draw inspiration from the principles of classic K-means clustering and are underpinned by robust theoretical foundations. Our empirical investigations, conducted across a variety of simulated environments, showcase the algorithms' ability to facilitate meaningful personalization even under constrained policy budgets. Furthermore, they demonstrate scalability, efficiently adapting to larger policy budgets.


Deep Contract Design via Discontinuous Networks

arXiv.org Artificial Intelligence

Contract design involves a principal who establishes contractual agreements about payments for outcomes that arise from the actions of an agent. In this paper, we initiate the study of deep learning for the automated design of optimal contracts. We introduce a novel representation: the Discontinuous ReLU (DeLU) network, which models the principal's utility as a discontinuous piecewise affine function of the design of a contract where each piece corresponds to the agent taking a particular action. DeLU networks implicitly learn closed-form expressions for the incentive compatibility constraints of the agent and the utility maximization objective of the principal, and support parallel inference on each piece through linear programming or interior-point methods that solve for optimal contracts. We provide empirical results that demonstrate success in approximating the principal's utility function with a small number of training samples and scaling to find approximately optimal contracts on problems with a large number of actions and outcomes.


Mediated Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

The majority of Multi-Agent Reinforcement Learning (MARL) literature equates the cooperation of self-interested agents in mixed environments to the problem of social welfare maximization, allowing agents to arbitrarily share rewards and private information. This results in agents that forgo their individual goals in favour of social good, which can potentially be exploited by selfish defectors. We argue that cooperation also requires agents' identities and boundaries to be respected by making sure that the emergent behaviour is an equilibrium, i.e., a convention that no agent can deviate from and receive higher individual payoffs. Inspired by advances in mechanism design, we propose to solve the problem of cooperation, defined as finding socially beneficial equilibrium, by using mediators. A mediator is a benevolent entity that may act on behalf of agents, but only for the agents that agree to it. We show how a mediator can be trained alongside agents with policy gradient to maximize social welfare subject to constraints that encourage agents to cooperate through the mediator. Our experiments in matrix and iterative games highlight the potential power of applying mediators in MARL.


Flatland Competition 2020: MAPF and MARL for Efficient Train Coordination on a Grid World

arXiv.org Artificial Intelligence

The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling problem (VRSP). The VRSP is concerned with scheduling trips in traffic networks and the re-scheduling of vehicles when disruptions occur, for example the breakdown of a vehicle. While solving the VRSP in various settings has been an active area in operations research (OR) for decades, the ever-growing complexity of modern railway networks makes dynamic real-time scheduling of traffic virtually impossible. Recently, multi-agent reinforcement learning (MARL) has successfully tackled challenging tasks where many agents need to be coordinated, such as multiplayer video games. However, the coordination of hundreds of agents in a real-life setting like a railway network remains challenging and the Flatland environment used for the competition models these real-world properties in a simplified manner. Submissions had to bring as many trains (agents) to their target stations in as little time as possible. While the best submissions were in the OR category, participants found many promising MARL approaches. Using both centralized and decentralized learning based approaches, top submissions used graph representations of the environment to construct tree-based observations. Further, different coordination mechanisms were implemented, such as communication and prioritization between agents. This paper presents the competition setup, four outstanding solutions to the competition, and a cross-comparison between them.


Balancing Rational and Other-Regarding Preferences in Cooperative-Competitive Environments

arXiv.org Artificial Intelligence

Recent reinforcement learning studies extensively explore the interplay between cooperative and competitive behaviour in mixed environments. Unlike cooperative environments where agents strive towards a common goal, mixed environments are notorious for the conflicts of selfish and social interests. As a consequence, purely rational agents often struggle to achieve and maintain cooperation. A prevalent approach to induce cooperative behaviour is to assign additional rewards based on other agents' well-being. However, this approach suffers from the issue of multi-agent credit assignment, which can hinder performance. This issue is efficiently alleviated in cooperative setting with such state-of-the-art algorithms as QMIX and COMA. Still, when applied to mixed environments, these algorithms may result in unfair allocation of rewards. We propose BAROCCO, an extension of these algorithms capable to balance individual and social incentives. The mechanism behind BAROCCO is to train two distinct but interwoven components that jointly affect each agent's decisions. Our meta-algorithm is compatible with both Q-learning and Actor-Critic frameworks. We experimentally confirm the advantages over the existing methods and explore the behavioural aspects of BAROCCO in two mixed multi-agent setups.


DEDPUL: Method for Mixture Proportion Estimation and Positive-Unlabeled Classification based on Density Estimation

arXiv.org Machine Learning

This paper studies Positive-Unlabeled Classification, the problem of semi-supervised binary classification in the case when Negative (N) class in the training set is contaminated with instances of Positive (P) class. We develop a novel method (DEDPUL) that simultaneously solves two problems concerning the contaminated Unlabeled (U) sample: estimates the proportions of the mixing components (P and N) in U, and classifies U. By conducting experiments on synthetic and real-world data we favorably compare DEDPUL with current state-of-the-art methods for both problems. We introduce an automatic procedure for DEDPUL hyperparameter optimization. Additionally, we improve two methods in the literature and achieve DEDPUL level of performance with one of them.