Plotting

 Iter, Dan


Focus on what matters: Applying Discourse Coherence Theory to Cross Document Coreference

arXiv.org Artificial Intelligence

Performing event and entity coreference resolution across documents vastly increases the number of candidate mentions, making it intractable to do the full $n^2$ pairwise comparisons. Existing approaches simplify by considering coreference only within document clusters, but this fails to handle inter-cluster coreference, common in many applications. As a result cross-document coreference algorithms are rarely applied to downstream tasks. We draw on an insight from discourse coherence theory: potential coreferences are constrained by the reader's discourse focus. We model the entities/events in a reader's focus as a neighborhood within a learned latent embedding space which minimizes the distance between mentions and the centroids of their gold coreference clusters. We then use these neighborhoods to sample only hard negatives to train a fine-grained classifier on mention pairs and their local discourse features. Our approach achieves state-of-the-art results for both events and entities on the ECB+, Gun Violence, Football Coreference, and Cross-Domain Cross-Document Coreference corpora. Furthermore, training on multiple corpora improves average performance across all datasets by 17.2 F1 points, leading to a robust coreference resolution model for use in downstream tasks where link distribution is unknown.


Socratic Learning: Augmenting Generative Models to Incorporate Latent Subsets in Training Data

arXiv.org Machine Learning

A challenge in training discriminative models like neural networks is obtaining enough labeled training data. Recent approaches use generative models to combine weak supervision sources, like user-defined heuristics or knowledge bases, to label training data. Prior work has explored learning accuracies for these sources even without ground truth labels, but they assume that a single accuracy parameter is sufficient to model the behavior of these sources over the entire training set. In particular, they fail to model latent subsets in the training data in which the supervision sources perform differently than on average. We present Socratic learning, a paradigm that uses feedback from a corresponding discriminative model to automatically identify these subsets and augments the structure of the generative model accordingly. Experimentally, we show that without any ground truth labels, the augmented generative model reduces error by up to 56.06% for a relation extraction task compared to a state-of-the-art weak supervision technique that utilizes generative models.