Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Iraj Saniee
Efficient Deep Approximation of GMMs
Shirin Jalali, Carl Nuzman, Iraj Saniee
The universal approximation theorem states that any regular function can be approximated closely using a single hidden layer neural network. Some recent work has shown that, for some special functions, the number of nodes in such an approximation could be exponentially reduced with multi-layer neural networks.
Efficient Deep Approximation of GMMs
Shirin Jalali, Carl Nuzman, Iraj Saniee
The universal approximation theorem states that any regular function can be approximated closely using a single hidden layer neural network. Some recent work has shown that, for some special functions, the number of nodes in such an approximation could be exponentially reduced with multi-layer neural networks.