Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Inmar Givoni
Min-Max Propagation
Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, Brendan J. Frey
We study the application of min-max propagation, a variation of belief propagation, for approximate min-max inference in factor graphs. We show that for "any" highorder function that can be minimized in O(ω), the min-max message update can be obtained using an efficient O(K(ω + log(K)) procedure, where K is the number of variables. We demonstrate how this generic procedure, in combination with efficient updates for a family of high-order constraints, enables the application of min-max propagation to efficiently approximate the NP-hard problem of makespan minimization, which seeks to distribute a set of tasks on machines, such that the worst case load is minimized.
Min-Max Propagation
Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, Brendan J. Frey
We study the application of min-max propagation, a variation of belief propagation, for approximate min-max inference in factor graphs. We show that for "any" highorder function that can be minimized in O(ω), the min-max message update can be obtained using an efficient O(K(ω + log(K)) procedure, where K is the number of variables. We demonstrate how this generic procedure, in combination with efficient updates for a family of high-order constraints, enables the application of min-max propagation to efficiently approximate the NP-hard problem of makespan minimization, which seeks to distribute a set of tasks on machines, such that the worst case load is minimized.