Goto

Collaborating Authors

 Inaba, Masayuki


Modification of muscle antagonistic relations and hand trajectory on the dynamic motion of Musculoskeletal Humanoid

arXiv.org Artificial Intelligence

In recent years, some research on musculoskeletal humanoids is in progress. However, there are some challenges such as unmeasurable transformation of body structure and muscle path, and difficulty in measuring own motion because of lack of joint angle sensor. In this study, we suggest two motion acquisition methods. One is a method to acquire antagonistic relations of muscles by tension sensing, and the other is a method to acquire correct hand trajectory by vision sensing. Finally, we realize badminton shuttlecock-hitting motion of Kengoro with these two acquisition methods.


Vlimb: A Wire-Driven Wearable Robot for Bodily Extension, Balancing Powerfulness and Reachability

arXiv.org Artificial Intelligence

Vlimb: A Wire-Driven Wearable Robot for Bodily Extension, Balancing Powerfulness and Reachability Shogo Sawaguchi 1, Temma Suzuki 1, Akihiro Miki 1, Kento Kawaharazuka 1, Sota Y uzaki 1, Shunnosuke Y oshimura 1, Y oshimoto Ribayashi 1, Kei Okada 1, Masayuki Inaba 1 Abstract -- Numerous wearable robots have been developed to meet the demands of physical assistance and entertainment. These wearable robots range from body-enhancing types that assist human arms and legs to body-extending types that have extra arms. This study focuses specifically on wearable robots of the latter category, aimed at bodily extension. However, they have not yet achieved the level of powerfulness and reachability equivalent to that of human limbs, limiting their application to entertainment and manipulation tasks involving lightweight objects. Therefore, in this study, we develop an body-extending wearable robot, Vlimb, which has enough powerfulness to lift a human and can perform manipulation. Leveraging the advantages of tendon-driven mechanisms, Vlimb incorporates a wire routing mechanism capable of accommodating both delicate manipulations and robust lifting tasks. Moreover, by introducing a passive ring structure to overcome the limited reachability inherent in tendon-driven mechanisms, Vlimb achieves both the powerfulness and reachability comparable to that of humans. This paper outlines the design methodology of Vlimb, conducts preliminary manipulation and lifting tasks, and verifies its effectiveness.


Integrative Wrapping System for a Dual-Arm Humanoid Robot

arXiv.org Artificial Intelligence

Flexible object manipulation of paper and cloth is a major research challenge in robot manipulation. Although there have been efforts to develop hardware that enables specific actions and to realize a single action of paper folding using sim-to-real and learning, there have been few proposals for humanoid robots and systems that enable continuous, multi-step actions of flexible materials. Wrapping an object with paper and tape is more complex and diverse than traditional manipulation research due to the increased number of objects that need to be handled, as well as the three-dimensionality of the operation. In this research, necessary information is organized and coded based on the characteristics of each object handled in wrapping. We also generalize the hardware configuration, manipulation method, and recognition system that enable humanoid wrapping operations. The system will include manipulation with admittance control focusing on paper tension and state evaluation using point clouds to handle three-dimensional flexible objects. Finally, wrapping objects with different shapes is experimented with to show the generality and effectiveness of the proposed system.


Self-Body Image Acquisition and Posture Generation with Redundancy using Musculoskeletal Humanoid Shoulder Complex for Object Manipulation

arXiv.org Artificial Intelligence

We proposed a method for learning the actual body image of a musculoskeletal humanoid for posture generation and object manipulation using inverse kinematics with redundancy in the shoulder complex. The effectiveness of this method was confirmed by realizing automobile steering wheel operation. The shoulder complex has a scapula that glides over the rib cage and an open spherical joint, and is supported by numerous muscle groups, enabling a wide range of motion. As a development of the human mimetic shoulder complex, we have increased the muscle redundancy by implementing deep muscles and stabilize the joint drive. As a posture generation method to utilize the joint redundancy of the shoulder complex, we consider inverse kinematics based on the scapular drive strategy suggested by the scapulohumeral rhythm of the human body. In order to control a complex robot imitating a human body, it is essential to learn its own body image, but it is difficult to know its own state accurately due to its deformation which is difficult to measure. To solve this problem, we developed a method to acquire a self-body image that can be updated appropriately by recognizing the hand position relative to an object for the purpose of object manipulation. We apply the above methods to a full-body musculoskeletal humanoid, Kengoro, and confirm its effectiveness by conducting an experiment to operate a car steering wheel, which requires the appropriate use of both arms.


Adaptive Body Schema Learning System Considering Additional Muscles for Musculoskeletal Humanoids

arXiv.org Artificial Intelligence

One of the important advantages of musculoskeletal humanoids is that the muscle arrangement can be easily changed and the number of muscles can be increased according to the situation. In this study, we describe an overall system of muscle addition for musculoskeletal humanoids and the adaptive body schema learning while taking into account the additional muscles. For hardware, we describe a modular body design that can be fitted with additional muscles, and for software, we describe a method that can learn the changes in body schema associated with additional muscles from a small amount of motion data. We apply our method to a simple 1-DOF tendon-driven robot simulation and the arm of the musculoskeletal humanoid Musashi, and show the effectiveness of muscle tension relaxation by adding muscles for a high-load task.


Motion Modification Method of Musculoskeletal Humanoids by Human Teaching Using Muscle-Based Compensation Control

arXiv.org Artificial Intelligence

Abstract-- While musculoskeletal humanoids have the advantages of various biomimetic structures, it is difficult to accurately control the body, which is challenging to model. Although various learning-based control methods have been developed so far, they cannot completely absorb model errors, and recognition errors are also bound to occur. In this paper, we describe a method to modify the movement of the musculoskeletal humanoid by applying external force during the movement, taking advantage of its flexible body. Considering the fact that the joint angles cannot be measured, and that the external force greatly affects the nonlinear elastic element and not the actuator, the modified motion is reproduced by the proposed muscle-based compensation control. This method is applied to a musculoskeletal humanoid, Musashi, and its effectiveness is confirmed.


Fundamental Three-Dimensional Configuration of Wire-Wound Muscle-Tendon Complex Drive

arXiv.org Artificial Intelligence

For robots to become more versatile and expand their areas of application, their bodies need to be suitable for contact with the environment. When the human body comes into contact with the environment, it is possible for it to continue to move even if the positional relationship between muscles or the shape of the muscles changes. We have already focused on the effect of geometric deformation of muscles and proposed a drive system called wire-wound Muscle-Tendon Complex (ww-MTC), an extension of the wire drive system. Our previous study using a robot with a two-dimensional configuration demonstrated several advantages: reduced wire loosening, interference, and wear; improved robustness during environmental contact; and a muscular appearance. However, this design had some problems, such as excessive muscle expansion that hindered inter-muscle movement, and confinement to planar motion. In this study, we develop the ww-MTC into a three-dimensional shape. We present a fundamental construction method for a muscle exterior that expands gently and can be contacted over its entire surface. We also apply the three-dimensional ww-MTC to a 2-axis 3-muscle robot, and confirm that the robot can continue to move while adapting to its environment.


Robotic State Recognition with Image-to-Text Retrieval Task of Pre-Trained Vision-Language Model and Black-Box Optimization

arXiv.org Artificial Intelligence

State recognition of the environment and objects, such as the open/closed state of doors and the on/off of lights, is indispensable for robots that perform daily life support and security tasks. Until now, state recognition methods have been based on training neural networks from manual annotations, preparing special sensors for the recognition, or manually programming to extract features from point clouds or raw images. In contrast, we propose a robotic state recognition method using a pre-trained vision-language model, which is capable of Image-to-Text Retrieval (ITR) tasks. We prepare several kinds of language prompts in advance, calculate the similarity between these prompts and the current image by ITR, and perform state recognition. By applying the optimal weighting to each prompt using black-box optimization, state recognition can be performed with higher accuracy. Experiments show that this theory enables a variety of state recognitions by simply preparing multiple prompts without retraining neural networks or manual programming. In addition, since only prompts and their weights need to be prepared for each recognizer, there is no need to prepare multiple models, which facilitates resource management. It is possible to recognize the open/closed state of transparent doors, the state of whether water is running or not from a faucet, and even the qualitative state of whether a kitchen is clean or not, which have been challenging so far, through language.


Component Modularized Design of Musculoskeletal Humanoid Platform Musashi to Investigate Learning Control Systems

arXiv.org Artificial Intelligence

To develop Musashi as a musculoskeletal humanoid platform to investigate learning control systems, we aimed for a body with flexible musculoskeletal structure, redundant sensors, and easily reconfigurable structure. For this purpose, we develop joint modules that can directly measure joint angles, muscle modules that can realize various muscle routes, and nonlinear elastic units with soft structures, etc. Next, we develop MusashiLarm, a musculoskeletal platform composed of only joint modules, muscle modules, generic bone frames, muscle wire units, and a few attachments. Finally, we develop Musashi, a musculoskeletal humanoid platform which extends MusashiLarm to the whole body design, and conduct several basic experiments and learning control experiments to verify the effectiveness of its concept.


A Robot Kinematics Model Estimation Using Inertial Sensors for On-Site Building Robotics

arXiv.org Artificial Intelligence

In order to make robots more useful in a variety of environments, they need to be highly portable so that they can be transported to wherever they are needed, and highly storable so that they can be stored when not in use. We propose "on-site robotics", which uses parts procured at the location where the robot will be active, and propose a new solution to the problem of portability and storability. In this paper, as a proof of concept for on-site robotics, we describe a method for estimating the kinematic model of a robot by using inertial measurement units (IMU) sensor module on rigid links, estimating the relative orientation between modules from angular velocity, and estimating the relative position from the measurement of centrifugal force. At the end of this paper, as an evaluation for this method, we present an experiment in which a robot made up of wooden sticks reaches a target position. In this experiment, even if the combination of the links is changed, the robot is able to reach the target position again immediately after estimation, showing that it can operate even after being reassembled. Our implementation is available on https://github.com/hiroya1224/urdf_estimation_with_imus .