Not enough data to create a plot.
Try a different view from the menu above.
Ilija Bogunovic
Adversarially Robust Optimization with Gaussian Processes
Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher
In this paper, we consider the problem of Gaussian process (GP) optimization with an added robustness requirement: The returned point may be perturbed by an adversary, and we require the function value to remain as high as possible even after this perturbation. This problem is motivated by settings in which the underlying functions during optimization and implementation stages are different, or when one is interested in finding an entire region of good inputs rather than only a single point.
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
We consider the problem of learning to play a repeated multi-agent game with an unknown reward function. Single player online learning algorithms attain strong regret bounds when provided with full information feedback, which unfortunately is unavailable in many real-world scenarios. Bandit feedback alone, i.e., observing outcomes only for the selected action, yields substantially worse performance. In this paper, we consider a natural model where, besides a noisy measurement of the obtained reward, the player can also observe the opponents' actions. This feedback model, together with a regularity assumption on the reward function, allows us to exploit the correlations among different game outcomes by means of Gaussian processes (GPs). We propose a novel confidence-bound based bandit algorithm GP-MW, which utilizes the GP model for the reward function and runs a multiplicative weight (MW) method. We obtain novel kernel-dependent regret bounds that are comparable to the known bounds in the full information setting, while substantially improving upon the existing bandit results. We experimentally demonstrate the effectiveness of GP-MW in random matrix games, as well as realworld problems of traffic routing and movie recommendation. In our experiments, GP-MW consistently outperforms several baselines, while its performance is often comparable to methods that have access to full information feedback.
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
We consider the problem of learning to play a repeated multi-agent game with an unknown reward function. Single player online learning algorithms attain strong regret bounds when provided with full information feedback, which unfortunately is unavailable in many real-world scenarios. Bandit feedback alone, i.e., observing outcomes only for the selected action, yields substantially worse performance. In this paper, we consider a natural model where, besides a noisy measurement of the obtained reward, the player can also observe the opponents' actions. This feedback model, together with a regularity assumption on the reward function, allows us to exploit the correlations among different game outcomes by means of Gaussian processes (GPs). We propose a novel confidence-bound based bandit algorithm GP-MW, which utilizes the GP model for the reward function and runs a multiplicative weight (MW) method. We obtain novel kernel-dependent regret bounds that are comparable to the known bounds in the full information setting, while substantially improving upon the existing bandit results. We experimentally demonstrate the effectiveness of GP-MW in random matrix games, as well as realworld problems of traffic routing and movie recommendation. In our experiments, GP-MW consistently outperforms several baselines, while its performance is often comparable to methods that have access to full information feedback.
An Efficient Streaming Algorithm for the Submodular Cover Problem
Ashkan Norouzi-Fard, Abbas Bazzi, Ilija Bogunovic, Marwa El Halabi, Ya-Ping Hsieh, Volkan Cevher
We initiate the study of the classical Submodular Cover (SC) problem in the data streaming model which we refer to as the Streaming Submodular Cover (SSC). We show that any single pass streaming algorithm using sublinear memory in the size of the stream will fail to provide any non-trivial approximation guarantees for SSC. Hence, we consider a relaxed version of SSC, where we only seek to find a partial cover. We design the first Efficient bicriteria Submodular Cover Streaming (ESC-Streaming) algorithm for this problem, and provide theoretical guarantees for its performance supported by numerical evidence. Our algorithm finds solutions that are competitive with the near-optimal offline greedy algorithm despite requiring only a single pass over the data stream. In our numerical experiments, we evaluate the performance of ESC-Streaming on active set selection and large-scale graph cover problems.
Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach
Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub M. Tarnawski, Volkan Cevher
We study the classical problem of maximizing a monotone submodular function subject to a cardinality constraint k, with two additional twists: (i) elements arrive in a streaming fashion, and (ii) m items from the algorithm's memory are removed after the stream is finished. We develop a robust submodular algorithm STAR-T. It is based on a novel partitioning structure and an exponentially decreasing thresholding rule. STAR-T makes one pass over the data and retains a short but robust summary.
Adversarially Robust Optimization with Gaussian Processes
Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher
In this paper, we consider the problem of Gaussian process (GP) optimization with an added robustness requirement: The returned point may be perturbed by an adversary, and we require the function value to remain as high as possible even after this perturbation. This problem is motivated by settings in which the underlying functions during optimization and implementation stages are different, or when one is interested in finding an entire region of good inputs rather than only a single point.