Ihler, Alexander
Anytime Anyspace AND/OR Search for Bounding the Partition Function
Lou, Qi (University of California, Irvine) | Dechter, Rina (University of California, Irvine) | Ihler, Alexander (University of California, Irvine)
Bounding the partition function is a key inference task in many graphical models. In this paper, we develop an anytime anyspace search algorithm taking advantage of AND/OR tree structure and optimized variational heuristics to tighten deterministic bounds on the partition function. We study how our priority-driven best-first search scheme can improve on state-of-the-art variational bounds in an anytime way within limited memory resources, as well as the effect of the AND/OR framework to exploit conditional independence structure within the search process within the context of summation. We compare our resulting bounds to a number of existing methods, and show that our approach offers a number of advantages on real-world problem instances taken from recent UAI competitions.
Anytime Best+Depth-First Search for Bounding Marginal MAP
Marinescu, Radu (IBM Research - Ireland) | Lee, Junkyu (University of California, Irvine) | Ihler, Alexander (University of California, Irvine) | Dechter, Rina (University of California, Irvine)
We introduce new anytime search algorithms that combine best-first with depth-first search into hybrid schemes for Marginal MAP inference in graphical models. The main goal is to facilitate the generation of upper bounds (via the best-first part) alongside the lower bounds of solutions (via the depth-first part) in an anytime fashion. We compare against two of the best current state-of-the-art schemes and show that our best+depth search scheme produces higher quality solutions faster while also producing a bound on their accuracy, which can be used to measure solution quality during search. An extensive empirical evaluation demonstrates the effectiveness of our new methods which enjoy the strength of best-first (optimality of search) and of depth-first (memory robustness), leading to solutions for difficult instances where previous solvers were unable to find even a single solution.
From Exact to Anytime Solutions for Marginal MAP
Lee, Junkyu (University of California, Irvine) | Marinescu, Radu (IBM Research) | Dechter, Rina (University of California, Irvine) | Ihler, Alexander (University of California, Irvine)
This paper explores the anytime performance of search-based algorithms for solving the Marginal MAP task over graphical models. The current state of the art for solving this challenging task is based on best-first search exploring the AND/OR graph with the guidance of heuristics based on mini-bucket and variational cost-shifting principles. Yet, those schemes are uncompromising in that they solve the problem exactly, or not at all, and often suffer from memory problems. In this work, we explore the well known principle of weighted search for converting best-first search solvers into anytime schemes. The weighted best-first search schemes report a solution early in the process by using inadmissible heuristics, and subsequently improve the solution. While it was demonstrated recently that weighted schemes can yield effective anytime behavior for pure MAP tasks, Marginal MAP is far more challenging (e.g., a conditional sum must be evaluated for every solution). Yet, in an extensive empirical analysis we show that weighted schemes are indeed highly effective for Marginal MAP yielding the most competitive schemes to date for this task.
Decomposition Bounds for Marginal MAP
Ping, Wei, Liu, Qiang, Ihler, Alexander
Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, which includes marginal MAP, along with pure marginalization and MAP, as special cases. Our method is based on a block coordinate descent algorithm on a new convex decomposition bound, that is guaranteed to converge monotonically, and can be parallelized efficiently. We demonstrate our approach on marginal MAP queries defined on real-world problems from the UAI approximate inference challenge, showing that our framework is faster and more reliable than previous methods.
Distributed Estimation, Information Loss and Exponential Families
Liu, Qiang, Ihler, Alexander
Distributed learning of probabilistic models from multiple data repositories with minimum communication is increasingly important. We study a simple communication-efficient learning framework that first calculates the local maximum likelihood estimates (MLE) based on the data subsets, and then combines the local MLEs to achieve the best possible approximation to the global MLE given the whole dataset. We study this framework's statistical properties, showing that the efficiency loss compared to the global setting relates to how much the underlying distribution families deviate from full exponential families, drawing connection to the theory of information loss by Fisher, Rao and Efron. We show that the "full-exponential-family-ness" represents the lower bound of the error rate of arbitrary combinations of local MLEs, and is achieved by a KL-divergence-based combination method but not by a more common linear combination method. We also study the empirical properties of both methods, showing that the KL method significantly outperforms linear combination in practical settings with issues such as model misspecification, non-convexity, and heterogeneous data partitions.
Marginal Structured SVM with Hidden Variables
Ping, Wei, Liu, Qiang, Ihler, Alexander
In this work, we propose the marginal structured SVM (MSSVM) for structured prediction with hidden variables. MSSVM properly accounts for the uncertainty of hidden variables, and can significantly outperform the previously proposed latent structured SVM (LSSVM; Yu & Joachims (2009)) and other state-of-art methods, especially when that uncertainty is large. Our method also results in a smoother objective function, making gradient-based optimization of MSSVMs converge significantly faster than for LSSVMs. We also show that our method consistently outperforms hidden conditional random fields (HCRFs; Quattoni et al. (2007)) on both simulated and real-world datasets. Furthermore, we propose a unified framework that includes both our and several other existing methods as special cases, and provides insights into the comparison of different models in practice.
Variational Algorithms for Marginal MAP
Liu, Qiang, Ihler, Alexander
The marginal maximum a posteriori probability (MAP) estimation problem, which calculates the mode of the marginal posterior distribution of a subset of variables with the remaining variables marginalized, is an important inference problem in many models, such as those with hidden variables or uncertain parameters. Unfortunately, marginal MAP can be NP-hard even on trees, and has attracted less attention in the literature compared to the joint MAP (maximization) and marginalization problems. We derive a general dual representation for marginal MAP that naturally integrates the marginalization and maximization operations into a joint variational optimization problem, making it possible to easily extend most or all variational-based algorithms to marginal MAP. In particular, we derive a set of "mixed-product" message passing algorithms for marginal MAP, whose form is a hybrid of max-product, sum-product and a novel "argmax-product" message updates. We also derive a class of convergent algorithms based on proximal point methods, including one that transforms the marginal MAP problem into a sequence of standard marginalization problems. Theoretically, we provide guarantees under which our algorithms give globally or locally optimal solutions, and provide novel upper bounds on the optimal objectives. Empirically, we demonstrate that our algorithms significantly outperform the existing approaches, including a state-of-the-art algorithm based on local search methods.
Approximating the Sum Operation for Marginal-MAP Inference
Cheng, Qiang (Tsinghua University) | Chen, Feng (Tsinghua University) | Dong, Jianwu (Tsinghua University) | Xu, Wenli (Tsinghua University) | Ihler, Alexander (University of California, Irvine)
We study the marginal-MAP problem on graphical models, and present a novel approximation method based on direct approximation of the sum operation. A primary difficulty of marginal-MAP problems lies in the non-commutativity of the sum and max operations, so that even in highly structured models, marginalization may produce a densely connected graph over the variables to be maximized, resulting in an intractable potential function with exponential size. We propose a chain decomposition approach for summing over the marginalized variables, in which we produce a structured approximation to the MAP component of the problem consisting of only pairwise potentials. We show that this approach is equivalent to the maximization of a specific variational free energy, and it provides an upper bound of the optimal probability. Finally, experimental results demonstrate that our method performs favorably compared to previous methods.
Distributed Parameter Estimation via Pseudo-likelihood
Liu, Qiang, Ihler, Alexander
Estimating statistical models within sensor networks requires distributed algorithms, in which both data and computation are distributed across the nodes of the network. We propose a general approach for distributed learning based on combining local estimators defined by pseudo-likelihood components, encompassing a number of combination methods, and provide both theoretical and experimental analysis. We show that simple linear combination or max-voting methods, when combined with second-order information, are statistically competitive with more advanced and costly joint optimization. Our algorithms have many attractive properties including low communication and computational cost and "any-time" behavior.