Ibrahim, Mark
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
Goldblum, Micah, Souri, Hossein, Ni, Renkun, Shu, Manli, Prabhu, Viraj, Somepalli, Gowthami, Chattopadhyay, Prithvijit, Ibrahim, Mark, Bardes, Adrien, Hoffman, Judy, Chellappa, Rama, Wilson, Andrew Gordon, Goldstein, Tom
Neural network based computer vision systems are typically built on a backbone, a pretrained or randomly initialized feature extractor. Several years ago, the default option was an ImageNet-trained convolutional neural network. However, the recent past has seen the emergence of countless backbones pretrained using various algorithms and datasets. While this abundance of choice has led to performance increases for a range of systems, it is difficult for practitioners to make informed decisions about which backbone to choose. Battle of the Backbones (BoB) makes this choice easier by benchmarking a diverse suite of pretrained models, including vision-language models, those trained via self-supervised learning, and the Stable Diffusion backbone, across a diverse set of computer vision tasks ranging from classification to object detection to OOD generalization and more. Furthermore, BoB sheds light on promising directions for the research community to advance computer vision by illuminating strengths and weakness of existing approaches through a comprehensive analysis conducted on more than 1500 training runs. While vision transformers (ViTs) and self-supervised learning (SSL) are increasingly popular, we find that convolutional neural networks pretrained in a supervised fashion on large training sets still perform best on most tasks among the models we consider. Moreover, in apples-to-apples comparisons on the same architectures and similarly sized pretraining datasets, we find that SSL backbones are highly competitive, indicating that future works should perform SSL pretraining with advanced architectures and larger pretraining datasets.
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Eastwood, Cian, von Kügelgen, Julius, Ericsson, Linus, Bouchacourt, Diane, Vincent, Pascal, Schölkopf, Bernhard, Ibrahim, Mark
Self-supervised representation learning often uses data augmentations to induce some invariance to "style" attributes of the data. However, with downstream tasks generally unknown at training time, it is difficult to deduce a priori which attributes of the data are indeed "style" and can be safely discarded. To address this, we introduce a more principled approach that seeks to disentangle style features rather than discard them. The key idea is to add multiple style embedding spaces where: (i) each is invariant to all-but-one augmentation; and (ii) joint entropy is maximized. We formalize our structured data-augmentation procedure from a causal latent-variable-model perspective, and prove identifiability of both content and (multiple blocks of) style variables. We empirically demonstrate the benefits of our approach on synthetic datasets and then present promising but limited results on ImageNet.
Discovering environments with XRM
Pezeshki, Mohammad, Bouchacourt, Diane, Ibrahim, Mark, Ballas, Nicolas, Vincent, Pascal, Lopez-Paz, David
Successful out-of-distribution generalization requires environment annotations. Unfortunately, these are resource-intensive to obtain, and their relevance to model performance is limited by the expectations and perceptual biases of human annotators. Therefore, to enable robust AI systems across applications, we must develop algorithms to automatically discover environments inducing broad generalization. Current proposals, which divide examples based on their training error, suffer from one fundamental problem. These methods add hyper-parameters and early-stopping criteria that are impossible to tune without a validation set with human-annotated environments, the very information subject to discovery. XRM trains two twin networks, each learning from one random half of the training data, while imitating confident held-out mistakes made by its sibling. XRM provides a recipe for hyper-parameter tuning, does not require early-stopping, and can discover environments for all training and validation data. Domain generalization algorithms built on top of XRM environments achieve oracle worst-group-accuracy, solving a long-standing problem in out-of-distribution generalization. AI systems pervade our lives, spanning applications such as finance (Hand and Henley, 1997), healthcare (Jiang et al., 2017), self-driving vehicles (Bojarski et al., 2016), and justice (Angwin et al., 2016). While machines appear to outperform humans on such tasks, these systems fall apart when deployed in testing conditions different to their experienced training environments (Geirhos et al., 2020).
VPA: Fully Test-Time Visual Prompt Adaptation
Sun, Jiachen, Ibrahim, Mark, Hall, Melissa, Evtimov, Ivan, Mao, Z. Morley, Ferrer, Cristian Canton, Hazirbas, Caner
Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
Does Progress On Object Recognition Benchmarks Improve Real-World Generalization?
Richards, Megan, Kirichenko, Polina, Bouchacourt, Diane, Ibrahim, Mark
For more than a decade, researchers have measured progress in object recognition on ImageNet-based generalization benchmarks such as ImageNet-A, -C, and -R. Recent advances in foundation models, trained on orders of magnitude more data, have begun to saturate these standard benchmarks, but remain brittle in practice. This suggests standard benchmarks, which tend to focus on predefined or synthetic changes, may not be sufficient for measuring real world generalization. Consequently, we propose studying generalization across geography as a more realistic measure of progress using two datasets of objects from households across the globe. We conduct an extensive empirical evaluation of progress across nearly 100 vision models up to most recent foundation models. We first identify a progress gap between standard benchmarks and real-world, geographical shifts: progress on ImageNet results in up to 2.5x more progress on standard generalization benchmarks than real-world distribution shifts. Second, we study model generalization across geographies by measuring the disparities in performance across regions, a more fine-grained measure of real world generalization. We observe all models have large geographic disparities, even foundation CLIP models, with differences of 7-20% in accuracy between regions. Counter to modern intuition, we discover progress on standard benchmarks fails to improve geographic disparities and often exacerbates them: geographic disparities between the least performant models and today's best models have more than tripled. Our results suggest scaling alone is insufficient for consistent robustness to real-world distribution shifts. Finally, we highlight in early experiments how simple last layer retraining on more representative, curated data can complement scaling as a promising direction of future work, reducing geographic disparity on both benchmarks by over two-thirds.
A Cookbook of Self-Supervised Learning
Balestriero, Randall, Ibrahim, Mark, Sobal, Vlad, Morcos, Ari, Shekhar, Shashank, Goldstein, Tom, Bordes, Florian, Bardes, Adrien, Mialon, Gregoire, Tian, Yuandong, Schwarzschild, Avi, Wilson, Andrew Gordon, Geiping, Jonas, Garrido, Quentin, Fernandez, Pierre, Bar, Amir, Pirsiavash, Hamed, LeCun, Yann, Goldblum, Micah
Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Roth, Karsten, Ibrahim, Mark, Akata, Zeynep, Vincent, Pascal, Bouchacourt, Diane
A grand goal in deep learning research is to learn representations capable of generalizing across distribution shifts. Disentanglement is one promising direction aimed at aligning a model's representation with the underlying factors generating the data (e.g. color or background). Existing disentanglement methods, however, rely on an often unrealistic assumption: that factors are statistically independent. In reality, factors (like object color and shape) are correlated. To address this limitation, we consider the use of a relaxed disentanglement criterion -- the Hausdorff Factorized Support (HFS) criterion -- that encourages only pairwise factorized \emph{support}, rather than a factorial distribution, by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their support, including correlations between them. We show that the use of HFS consistently facilitates disentanglement and recovery of ground-truth factors across a variety of correlation settings and benchmarks, even under severe training correlations and correlation shifts, with in parts over $+60\%$ in relative improvement over existing disentanglement methods. In addition, we find that leveraging HFS for representation learning can even facilitate transfer to downstream tasks such as classification under distribution shifts. We hope our original approach and positive empirical results inspire further progress on the open problem of robust generalization. Code available at https://github.com/facebookresearch/disentangling-correlated-factors.
Robust Self-Supervised Learning with Lie Groups
Ibrahim, Mark, Bouchacourt, Diane, Morcos, Ari
Deep learning has led to remarkable advances in computer vision. Even so, today's best models are brittle when presented with variations that differ even slightly from those seen during training. Minor shifts in the pose, color, or illumination of an object can lead to catastrophic misclassifications. State-of-the art models struggle to understand how a set of variations can affect different objects. We propose a framework for instilling a notion of how objects vary in more realistic settings. Our approach applies the formalism of Lie groups to capture continuous transformations to improve models' robustness to distributional shifts. We apply our framework on top of state-of-the-art self-supervised learning (SSL) models, finding that explicitly modeling transformations with Lie groups leads to substantial performance gains of greater than 10% for MAE on both known instances seen in typical poses now presented in new poses, and on unknown instances in any pose. We also apply our approach to ImageNet, finding that the Lie operator improves performance by almost 4%. These results demonstrate the promise of learning transformations to improve model robustness.
Addressing the Topological Defects of Disentanglement via Distributed Operators
Bouchacourt, Diane, Ibrahim, Mark, Deny, Stéphane
A core challenge in Machine Learning is to learn to disentangle natural factors of variation in data (e.g. object shape vs. pose). A popular approach to disentanglement consists in learning to map each of these factors to distinct subspaces of a model's latent representation. However, this approach has shown limited empirical success to date. Here, we show that, for a broad family of transformations acting on images--encompassing simple affine transformations such as rotations and translations--this approach to disentanglement introduces topological defects (i.e. discontinuities in the encoder). Motivated by classical results from group representation theory, we study an alternative, more flexible approach to disentanglement which relies on distributed latent operators, potentially acting on the entire latent space. We theoretically and empirically demonstrate the effectiveness of this approach to disentangle affine transformations. Our work lays a theoretical foundation for the recent success of a new generation of models using distributed operators for disentanglement.
Global Explanations of Neural Networks: Mapping the Landscape of Predictions
Ibrahim, Mark, Louie, Melissa, Modarres, Ceena, Paisley, John
A barrier to the wider adoption of neural networks is their lack of interpretability. While local explanation methods exist for one prediction, most global attributions still reduce neural network decisions to a single set of features. In response, we present an approach for generating global attributions called GAM, which explains the landscape of neural network predictions across subpopulations. GAM augments global explanations with the proportion of samples that each attribution best explains and specifies which samples are described by each attribution. Global explanations also have tunable granularity to detect more or fewer subpopulations. We demonstrate that GAM's global explanations 1) yield the known feature importances of simulated data, 2) match feature weights of interpretable statistical models on real data, and 3) are intuitive to practitioners through user studies. With more transparent predictions, GAM can help ensure neural network decisions are generated for the right reasons.