Hutter, Marcus
Universal Convergence of Semimeasures on Individual Random Sequences
Hutter, Marcus, Muchnik, Andrej
Solomonoff's central result on induction is that the posterior of a universal semimeasure M converges rapidly and with probability 1 to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal sequence predictor in case of unknown mu. Despite some nearby results and proofs in the literature, the stronger result of convergence for all (Martin-Loef) random sequences remained open. Such a convergence result would be particularly interesting and natural, since randomness can be defined in terms of M itself. We show that there are universal semimeasures M which do not converge for all random sequences, i.e. we give a partial negative answer to the open problem. We also provide a positive answer for some non-universal semimeasures. We define the incomputable measure D as a mixture over all computable measures and the enumerable semimeasure W as a mixture over all enumerable nearly-measures. We show that W converges to D and D to mu on all random sequences. The Hellinger distance measuring closeness of two distributions plays a central role.
On the Convergence Speed of MDL Predictions for Bernoulli Sequences
Poland, Jan, Hutter, Marcus
We consider the Minimum Description Length principle for online sequence prediction. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is bounded, implying convergence with probability one, and (b) it additionally specifies a `rate of convergence'. Generally, for MDL only exponential loss bounds hold, as opposed to the linear bounds for a Bayes mixture. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. The results apply to many Machine Learning tasks including classification and hypothesis testing. We provide arguments that our theorems generalize to countable classes of i.i.d. models.
Distribution of Mutual Information from Complete and Incomplete Data
Hutter, Marcus, Zaffalon, Marco
Mutual information is widely used, in a descriptive way, to measure the stochastic dependence of categorical random variables. In order to address questions such as the reliability of the descriptive value, one must consider sample-to-population inferential approaches. This paper deals with the posterior distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean, and analytical approximations for the variance, skewness and kurtosis are derived. These approximations have a guaranteed accuracy level of the order O(1/n^3), where n is the sample size. Leading order approximations for the mean and the variance are derived in the case of incomplete samples. The derived analytical expressions allow the distribution of mutual information to be approximated reliably and quickly. In fact, the derived expressions can be computed with the same order of complexity needed for descriptive mutual information. This makes the distribution of mutual information become a concrete alternative to descriptive mutual information in many applications which would benefit from moving to the inductive side. Some of these prospective applications are discussed, and one of them, namely feature selection, is shown to perform significantly better when inductive mutual information is used.
Sequence Prediction based on Monotone Complexity
Hutter, Marcus
This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence behavior is unclear. In probabilistic environments, neither the posterior nor the losses converge, in general.
Distribution of Mutual Information
Hutter, Marcus
The mutual information of two random variables z and J with joint probabilities {7rij} is commonly used in learning Bayesian nets as well as in many other fields. The chances 7rij are usually estimated by the empirical sampling frequency nij In leading to a point estimate J(nij In) for the mutual information. To answer questions like "is J (nij In) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?"
Distribution of Mutual Information
Hutter, Marcus
The mutual information of two random variables z and J with joint probabilities {7rij} is commonly used in learning Bayesian nets as well as in many other fields. The chances 7rij are usually estimated by the empirical sampling frequency nij In leading to a point estimate J(nijIn) for the mutual information. To answer questions like "is J (nij In) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?"
Robust Feature Selection by Mutual Information Distributions
Zaffalon, Marco, Hutter, Marcus
Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.
Distribution of Mutual Information
Hutter, Marcus
The mutual information of two random variables i and j with joint probabilities t_ij is commonly used in learning Bayesian nets as well as in many other fields. The chances t_ij are usually estimated by the empirical sampling frequency n_ij/n leading to a point estimate I(n_ij/n) for the mutual information. To answer questions like "is I(n_ij/n) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?" one has to go beyond the point estimate. In the Bayesian framework one can answer these questions by utilizing a (second order) prior distribution p(t) comprising prior information about t. From the prior p(t) one can compute the posterior p(t|n), from which the distribution p(I|n) of the mutual information can be calculated. We derive reliable and quickly computable approximations for p(I|n). We concentrate on the mean, variance, skewness, and kurtosis, and non-informative priors. For the mean we also give an exact expression. Numerical issues and the range of validity are discussed.
Towards a Universal Theory of Artificial Intelligence based on Algorithmic Probability and Sequential Decision Theory
Hutter, Marcus
Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown distribution. We unify both theories and give strong arguments that the resulting universal AIXI model behaves optimal in any computable environment. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI^tl, which is still superior to any other time t and space l bounded agent. The computation time of AIXI^tl is of the order t x 2^l.
A Theory of Universal Artificial Intelligence based on Algorithmic Complexity
Hutter, Marcus
Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental prior probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown prior distribution. We combine both ideas and get a parameterless theory of universal Artificial Intelligence. We give strong arguments that the resulting AIXI model is the most intelligent unbiased agent possible. We outline for a number of problem classes, including sequence prediction, strategic games, function minimization, reinforcement and supervised learning, how the AIXI model can formally solve them. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI-tl, which is still effectively more intelligent than any other time t and space l bounded agent. The computation time of AIXI-tl is of the order tx2^l. Other discussed topics are formal definitions of intelligence order relations, the horizon problem and relations of the AIXI theory to other AI approaches.