Goto

Collaborating Authors

 Hutter, Marcus


Optimistic Agents are Asymptotically Optimal

arXiv.org Artificial Intelligence

We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.


Probabilities on Sentences in an Expressive Logic

arXiv.org Artificial Intelligence

Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being true, what probability should be ascribed to other (query) sentences? A natural wish-list, among others, is that the probability distribution (i) is consistent with the knowledge base, (ii) allows for a consistent inference procedure and in particular (iii) reduces to deductive logic in the limit of probabilities being 0 and 1, (iv) allows (Bayesian) inductive reasoning and (v) learning in the limit and in particular (vi) allows confirmation of universally quantified hypotheses/sentences. We translate this wish-list into technical requirements for a prior probability and show that probabilities satisfying all our criteria exist. We also give explicit constructions and several general characterizations of probabilities that satisfy some or all of the criteria and various (counter) examples. We also derive necessary and sufficient conditions for extending beliefs about finitely many sentences to suitable probabilities over all sentences, and in particular least dogmatic or least biased ones. We conclude with a brief outlook on how the developed theory might be used and approximated in autonomous reasoning agents. Our theory is a step towards a globally consistent and empirically satisfactory unification of probability and logic.


Context Tree Maximizing

AAAI Conferences

Recent developments in reinforcement learning for non-Markovianproblems witness a surge in history-based methods, among which weare particularly interested in two frameworks, PhiMDP and MC-AIXI-CTW. PhiMDP attempts to reduce the general RL problem, where the environment's states and dynamics are both unknown, toan MDP, while MC-AIXI-CTW incrementally learns a mixture of contexttrees as its environment model. The main idea of PhiMDP is toconnect generic reinforcement learning with classical reinforcementlearning. The first implementation of PhiMDP relies on astochastic search procedure for finding a tree that minimizes acertain cost function. This does not guarantee finding theminimizing tree, or even a good one, given limited search time. As aconsequence it appears that the approach has difficulties with largedomains. MC-AIXI-CTW is attractive in that it can incrementally andanalytically compute the internal model through interactions withthe environment. Unfortunately, it is computationally demanding dueto requiring heavy planning simulations at every single time step.We devise a novel approach called CTMRL, which analytically andefficiently finds the cost-minimizing tree. Instead of thecontext-tree weighting method that MC-AIXI-CTW is based on, we usethe closely related context-tree maximizing algorithm that selectsjust one single tree. This approach falls under the PhiMDPframework, which allows the replacement of the costly planningcomponent of MC-AIXI-CTW with simple Q-Learning. Our empiricalinvestigation show that CTMRL finds policies of quality as good as MC-AIXI-CTW's on sixdomains including a challenging Pacman domain, but in an order ofmagnitude less time.


One Decade of Universal Artificial Intelligence

arXiv.org Artificial Intelligence

The first decade of this century has seen the nascency of the first mathematical theory of general artificial intelligence. This theory of Universal Artificial Intelligence (UAI) has made significant contributions to many theoretical, philosophical, and practical AI questions. In a series of papers culminating in book (Hutter, 2005), an exciting sound and complete mathematical model for a super intelligent agent (AIXI) has been developed and rigorously analyzed. While nowadays most AI researchers avoid discussing intelligence, the award-winning PhD thesis (Legg, 2008) provided the philosophical embedding and investigated the UAI-based universal measure of rational intelligence, which is formal, objective and non-anthropocentric. Recently, effective approximations of AIXI have been derived and experimentally investigated in JAIR paper (Veness et al. 2011). This practical breakthrough has resulted in some impressive applications, finally muting earlier critique that UAI is only a theory. For the first time, without providing any domain knowledge, the same agent is able to self-adapt to a diverse range of interactive environments. For instance, AIXI is able to learn from scratch to play TicTacToe, Pacman, Kuhn Poker, and other games by trial and error, without even providing the rules of the games. These achievements give new hope that the grand goal of Artificial General Intelligence is not elusive. This article provides an informal overview of UAI in context. It attempts to gently introduce a very theoretical, formal, and mathematical subject, and discusses philosophical and technical ingredients, traits of intelligence, some social questions, and the past and future of UAI.


Principles of Solomonoff Induction and AIXI

arXiv.org Artificial Intelligence

We identify principles characterizing Solomonoff Induction by demands on an agent's external behaviour. Key concepts are rationality, computability, indifference and time consistency. Furthermore, we discuss extensions to the full AI case to derive AIXI.


Feature Reinforcement Learning In Practice

arXiv.org Artificial Intelligence

Following a recent surge in using history-based methods for resolving perceptual aliasing in reinforcement learning, we introduce an algorithm based on the feature reinforcement learning framework called PhiMDP. To create a practical algorithm we devise a stochastic search procedure for a class of context trees based on parallel tempering and a specialized proposal distribution. We provide the first empirical evaluation for PhiMDP. Our proposed algorithm achieves superior performance to the classical U-tree algorithm and the recent active-LZ algorithm, and is competitive with MC-AIXI-CTW that maintains a bayesian mixture over all context trees up to a chosen depth.We are encouraged by our ability to compete with this sophisticated method using an algorithm that simply picks one single model, and uses Q-learning on the corresponding MDP. Our PhiMDP algorithm is much simpler, yet consumes less time and memory. These results show promise for our future work on attacking more complex and larger problems.


Time Consistent Discounting

arXiv.org Artificial Intelligence

A possibly immortal agent tries to maximise its summed discounted rewards over time, where discounting is used to avoid infinite utilities and encourage the agent to value current rewards more than future ones. Some commonly used discount functions lead to time-inconsistent behavior where the agent changes its plan over time. These inconsistencies can lead to very poor behavior. We generalise the usual discounted utility model to one where the discount function changes with the age of the agent. We then give a simple characterisation of time-(in)consistent discount functions and show the existence of a rational policy for an agent that knows its discount function is time-inconsistent.


Asymptotically Optimal Agents

arXiv.org Artificial Intelligence

Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.


A Monte Carlo AIXI Approximation

arXiv.org Artificial Intelligence

This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. Our approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a new Monte-Carlo Tree Search algorithm along with an agent-specific extension to the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a variety of stochastic and partially observable domains. We conclude by proposing a number of directions for future research.


Model Selection by Loss Rank for Classification and Unsupervised Learning

arXiv.org Machine Learning

Hutter (2007) recently introduced the loss rank principle (LoRP) as a generalpurpose principle for model selection. The LoRP enjoys many attractive properties and deserves further investigations. The LoRP has been well-studied for regression framework in Hutter and Tran (2010). In this paper, we study the LoRP for classification framework, and develop it further for model selection problems in unsupervised learning where the main interest is to describe the associations between input measurements, like cluster analysis or graphical modelling. Theoretical properties and simulation studies are presented.