Goto

Collaborating Authors

 Huang, Xiaowei


An Adaptive Federated Relevance Framework for Spatial Temporal Graph Learning

arXiv.org Artificial Intelligence

Spatial-temporal data contains rich information and has been widely studied in recent years due to the rapid development of relevant applications in many fields. For instance, medical institutions often use electrodes attached to different parts of a patient to analyse the electorencephal data rich with spatial and temporal features for health assessment and disease diagnosis. Existing research has mainly used deep learning techniques such as convolutional neural network (CNN) or recurrent neural network (RNN) to extract hidden spatial-temporal features. Yet, it is challenging to incorporate both inter-dependencies spatial information and dynamic temporal changes simultaneously. In reality, for a model that leverages these spatial-temporal features to fulfil complex prediction tasks, it often requires a colossal amount of training data in order to obtain satisfactory model performance. Considering the above-mentioned challenges, we propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning in this paper. After transforming the raw spatial-temporal data into high quality features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs capable of capturing the hidden topological and long-term temporal correlation information in these graphs. To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module in our framework to leverage diverse data distributions from different participants with attentive aggregations of their models.


Exploiting Spatial-temporal Data for Sleep Stage Classification via Hypergraph Learning

arXiv.org Artificial Intelligence

Sleep stage classification is crucial for detecting patients' health conditions. Existing models, which mainly use Convolutional Neural Networks (CNN) for modelling Euclidean data and Graph Convolution Networks (GNN) for modelling non-Euclidean data, are unable to consider the heterogeneity and interactivity of multimodal data as well as the spatial-temporal correlation simultaneously, which hinders a further improvement of classification performance. In this paper, we propose a dynamic learning framework STHL, which introduces hypergraph to encode spatial-temporal data for sleep stage classification. Hypergraphs can construct multi-modal/multi-type data instead of using simple pairwise between two subjects. STHL creates spatial and temporal hyperedges separately to build node correlations, then it conducts type-specific hypergraph learning process to encode the attributes into the embedding space. Extensive experiments show that our proposed STHL outperforms the state-of-the-art models in sleep stage classification tasks.


MathAttack: Attacking Large Language Models Towards Math Solving Ability

arXiv.org Artificial Intelligence

With the boom of Large Language Models (LLMs), the research of solving Math Word Problem (MWP) has recently made great progress. However, there are few studies to examine the security of LLMs in math solving ability. Instead of attacking prompts in the use of LLMs, we propose a MathAttack model to attack MWP samples which are closer to the essence of security in solving math problems. Compared to traditional text adversarial attack, it is essential to preserve the mathematical logic of original MWPs during the attacking. To this end, we propose logical entity recognition to identify logical entries which are then frozen. Subsequently, the remaining text are attacked by adopting a word-level attacker. Furthermore, we propose a new dataset RobustMath to evaluate the robustness of LLMs in math solving ability. Extensive experiments on our RobustMath and two another math benchmark datasets GSM8K and MultiAirth show that MathAttack could effectively attack the math solving ability of LLMs. In the experiments, we observe that (1) Our adversarial samples from higher-accuracy LLMs are also effective for attacking LLMs with lower accuracy (e.g., transfer from larger to smaller-size LLMs, or from few-shot to zero-shot prompts); (2) Complex MWPs (such as more solving steps, longer text, more numbers) are more vulnerable to attack; (3) We can improve the robustness of LLMs by using our adversarial samples in few-shot prompts. Finally, we hope our practice and observation can serve as an important attempt towards enhancing the robustness of LLMs in math solving ability. We will release our code and dataset.


Hierarchical Distribution-Aware Testing of Deep Learning

arXiv.org Artificial Intelligence

Deep Learning (DL) is increasingly used in safety-critical applications, raising concerns about its reliability. DL suffers from a well-known problem of lacking robustness, especially when faced with adversarial perturbations known as Adversarial Examples (AEs). Despite recent efforts to detect AEs using advanced attack and testing methods, these approaches often overlook the input distribution and perceptual quality of the perturbations. As a result, the detected AEs may not be relevant in practical applications or may appear unrealistic to human observers. This can waste testing resources on rare AEs that seldom occur during real-world use, limiting improvements in DL model dependability. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the feature level distribution and the pixel level distribution, capturing the perceptual quality of adversarial perturbations. The two considerations are encoded by a novel hierarchical mechanism. First, we select test seeds based on the density of feature level distribution and the vulnerability of adversarial robustness. The vulnerability of test seeds are indicated by the auxiliary information, that are highly correlated with local robustness. Given a test seed, we then develop a novel genetic algorithm based local test case generation method, in which two fitness functions work alternatively to control the perceptual quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions is superior to the state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only detecting imperceptible AEs but also improving the overall robustness of the DL model under testing.


A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exploded a new heatwave of AI for their ability to engage end-users in human-level conversations with detailed and articulate answers across many knowledge domains. In response to their fast adoption in many industrial applications, this survey concerns their safety and trustworthiness. First, we review known vulnerabilities and limitations of the LLMs, categorising them into inherent issues, attacks, and unintended bugs. Then, we consider if and how the Verification and Validation (V&V) techniques, which have been widely developed for traditional software and deep learning models such as convolutional neural networks as independent processes to check the alignment of their implementations against the specifications, can be integrated and further extended throughout the lifecycle of the LLMs to provide rigorous analysis to the safety and trustworthiness of LLMs and their applications. Specifically, we consider four complementary techniques: falsification and evaluation, verification, runtime monitoring, and regulations and ethical use. In total, 370+ references are considered to support the quick understanding of the safety and trustworthiness issues from the perspective of V&V. While intensive research has been conducted to identify the safety and trustworthiness issues, rigorous yet practical methods are called for to ensure the alignment of LLMs with safety and trustworthiness requirements.


A Symbolic Character-Aware Model for Solving Geometry Problems

arXiv.org Artificial Intelligence

AI has made significant progress in solving math problems, but geometry problems remain challenging due to their reliance on both text and diagrams. In the text description, symbolic characters such as "$\triangle$ABC" often serve as a bridge to connect the corresponding diagram. However, by simply tokenizing symbolic characters into individual letters (e.g., 'A', 'B' and 'C'), existing works fail to study them explicitly and thus lose the semantic relationship with the diagram. In this paper, we develop a symbolic character-aware model to fully explore the role of these characters in both text and diagram understanding and optimize the model under a multi-modal reasoning framework. In the text encoder, we propose merging individual symbolic characters to form one semantic unit along with geometric information from the corresponding diagram. For the diagram encoder, we pre-train it under a multi-label classification framework with the symbolic characters as labels. In addition, we enhance the geometry diagram understanding ability via a self-supervised learning method under the masked image modeling auxiliary task. By integrating the proposed model into a general encoder-decoder pipeline for solving geometry problems, we demonstrate its superiority on two benchmark datasets, including GeoQA and Geometry3K, with extensive experiments. Specifically, on GeoQA, the question-solving accuracy is increased from 60.0\% to 64.1\%, achieving a new state-of-the-art accuracy; on Geometry3K, we reduce the question average solving steps from 6.9 down to 6.0 with marginally higher solving accuracy.


SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability

arXiv.org Artificial Intelligence

Interpretability of Deep Learning (DL) is a barrier to trustworthy AI. Despite great efforts made by the Explainable AI (XAI) community, explanations lack robustness -- indistinguishable input perturbations may lead to different XAI results. Thus, it is vital to assess how robust DL interpretability is, given an XAI method. In this paper, we identify several challenges that the state-of-the-art is unable to cope with collectively: i) existing metrics are not comprehensive; ii) XAI techniques are highly heterogeneous; iii) misinterpretations are normally rare events. To tackle these challenges, we introduce two black-box evaluation methods, concerning the worst-case interpretation discrepancy and a probabilistic notion of how robust in general, respectively. Genetic Algorithm (GA) with bespoke fitness function is used to solve constrained optimisation for efficient worst-case evaluation. Subset Simulation (SS), dedicated to estimate rare event probabilities, is used for evaluating overall robustness. Experiments show that the accuracy, sensitivity, and efficiency of our methods outperform the state-of-the-arts. Finally, we demonstrate two applications of our methods: ranking robust XAI methods and selecting training schemes to improve both classification and interpretation robustness.


DSHGT: Dual-Supervisors Heterogeneous Graph Transformer -- A pioneer study of using heterogeneous graph learning for detecting software vulnerabilities

arXiv.org Artificial Intelligence

Vulnerability detection is a critical problem in software security and attracts growing attention both from academia and industry. Traditionally, software security is safeguarded by designated rule-based detectors that heavily rely on empirical expertise, requiring tremendous effort from software experts to generate rule repositories for large code corpus. Recent advances in deep learning, especially Graph Neural Networks (GNN), have uncovered the feasibility of automatic detection of a wide range of software vulnerabilities. However, prior learning-based works only break programs down into a sequence of word tokens for extracting contextual features of codes, or apply GNN largely on homogeneous graph representation (e.g., AST) without discerning complex types of underlying program entities (e.g., methods, variables). In this work, we are one of the first to explore heterogeneous graph representation in the form of Code Property Graph and adapt a well-known heterogeneous graph network with a dual-supervisor structure for the corresponding graph learning task. Using the prototype built, we have conducted extensive experiments on both synthetic datasets and real-world projects. Compared with the state-of-the-art baselines, the results demonstrate promising effectiveness in this research direction in terms of vulnerability detection performance (average F1 improvements over 10\% in real-world projects) and transferability from C/C++ to other programming languages (average F1 improvements over 11%).


What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety Critical Systems

arXiv.org Artificial Intelligence

Machine learning has made remarkable advancements, but confidently utilising learning-enabled components in safety-critical domains still poses challenges. Among the challenges, it is known that a rigorous, yet practical, way of achieving safety guarantees is one of the most prominent. In this paper, we first discuss the engineering and research challenges associated with the design and verification of such systems. Then, based on the observation that existing works cannot actually achieve provable guarantees, we promote a two-step verification method for the ultimate achievement of provable statistical guarantees.


Formal Verification of Robustness and Resilience of Learning-Enabled State Estimation Systems

arXiv.org Artificial Intelligence

This paper presents a formal verification guided approach for a principled design and implementation of robust and resilient learning-enabled systems. We focus on learning-enabled state estimation systems (LE-SESs), which have been widely used in robotics applications to determine the current state (e.g., location, speed, direction, etc.) of a complex system. The LE-SESs are networked systems composed of a set of connected components including Bayes filters for localisation, and neural networks for processing sensory input. We study LE-SESs from the perspective of formal verification, which determines the satisfiability of a system model against the specified properties. Over LE-SESs, we investigate two key properties - robustness and resilience - and provide their formal definitions. To enable formal verification, we reduce the LE-SESs to a novel class of labelled transition systems, named {PO}2-LTS in the paper, and formally express the properties as constrained optimisation objectives. We prove that the robustness verification is NP-complete. Based on {PO}2-LTS and the optimisation objectives, practical verification algorithms are developed to check the satisfiability of the properties on the LE-SESs. As a major case study, we interrogate a real-world dynamic tracking system which uses a single Kalman Filter (KF) - a special case of Bayes filter - to localise and track a ground vehicle. Its perception system, based on convolutional neural networks, processes a high-resolution Wide Area Motion Imagery (WAMI) data stream. Experimental results show that our algorithms can not only verify the properties of the WAMI tracking system but also provide representative examples, the latter of which inspired us to take an enhanced LE-SESs design where runtime monitors or joint-KFs are required. Experimental results confirm the improvement of the robustness of the enhanced design.