Goto

Collaborating Authors

 Huang, Tiansheng


Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning

arXiv.org Artificial Intelligence

Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. First time in the literature, we show that the jail-broken effect can be mitigated by separating states in the finetuning stage to optimize the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the \textit{excess drift} towards consensus could be a probable reason for the instability. To remedy this issue, we propose \textbf{L}azy(\textbf{i}) \textbf{s}afety \textbf{a}lignment (\textbf{Lisa}), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream finetuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at \url{https://github.com/git-disl/Lisa}.


Robust Few-Shot Ensemble Learning with Focal Diversity-Based Pruning

arXiv.org Artificial Intelligence

This paper presents FusionShot, a focal diversity optimized few-shot ensemble learning approach for boosting the robustness and generalization performance of pre-trained few-shot models. The paper makes three original contributions. First, we explore the unique characteristics of few-shot learning to ensemble multiple few-shot (FS) models by creating three alternative fusion channels. Second, we introduce the concept of focal error diversity to learn the most efficient ensemble teaming strategy, rather than assuming that an ensemble of a larger number of base models will outperform those sub-ensembles of smaller size. We develop a focal-diversity ensemble pruning method to effectively prune out the candidate ensembles with low ensemble error diversity and recommend top-$K$ FS ensembles with the highest focal error diversity. Finally, we capture the complex non-linear patterns of ensemble few-shot predictions by designing the learn-to-combine algorithm, which can learn the diverse weight assignments for robust ensemble fusion over different member models. Extensive experiments on representative few-shot benchmarks show that the top-K ensembles recommended by FusionShot can outperform the representative SOTA few-shot models on novel tasks (different distributions and unknown at training), and can prevail over existing few-shot learners in both cross-domain settings and adversarial settings. For reproducibility purposes, FusionShot trained models, results, and code are made available at https://github.com/sftekin/fusionshot


A Survey on Large Language Model-Based Game Agents

arXiv.org Artificial Intelligence

The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI). The progress of LLMs and their multimodal counterparts (MLLMs) offers an unprecedented opportunity to evolve and empower game agents with human-like decision-making capabilities in complex computer game environments. This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint. First, we introduce the conceptual architecture of LLM-based game agents, centered around six essential functional components: perception, memory, thinking, role-playing, action, and learning. Second, we survey existing representative LLM-based game agents documented in the literature with respect to methodologies and adaptation agility across six genres of games, including adventure, communication, competition, cooperation, simulation, and crafting & exploration games. Finally, we present an outlook of future research and development directions in this burgeoning field.


Vaccine: Perturbation-aware Alignment for Large Language Model

arXiv.org Artificial Intelligence

The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a \textit{harmful embedding drift} phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at \url{https://github.com/git-disl/Vaccine}.


Pok\'eLLMon: A Human-Parity Agent for Pok\'emon Battles with Large Language Models

arXiv.org Artificial Intelligence

We introduce \textsc{Pok\'eLLMon}, the first LLM-embodied agent that achieves human-parity performance in tactical battle games, as demonstrated in Pok\'emon battles. The design of \textsc{Pok\'eLLMon} incorporates three key strategies: (i) In-context reinforcement learning that instantly consumes text-based feedback derived from battles to iteratively refine the policy; (ii) Knowledge-augmented generation that retrieves external knowledge to counteract hallucination and enables the agent to act timely and properly; (iii) Consistent action generation to mitigate the \textit{panic switching} phenomenon when the agent faces a powerful opponent and wants to elude the battle. We show that online battles against human demonstrates \textsc{Pok\'eLLMon}'s human-like battle strategies and just-in-time decision making, achieving 49\% of win rate in the Ladder competitions and 56\% of win rate in the invited battles. Our implementation and playable battle logs are available at: \url{https://github.com/git-disl/PokeLLMon}.


Adaptive Deep Neural Network Inference Optimization with EENet

arXiv.org Artificial Intelligence

Well-trained deep neural networks (DNNs) treat all test samples equally during prediction. Adaptive DNN inference with early exiting leverages the observation that some test examples can be easier to predict than others. This paper presents EENet, a novel early-exiting scheduling framework for multi-exit DNN models. Instead of having every sample go through all DNN layers during prediction, EENet learns an early exit scheduler, which can intelligently terminate the inference earlier for certain predictions, which the model has high confidence of early exit. As opposed to previous early-exiting solutions with heuristics-based methods, our EENet framework optimizes an early-exiting policy to maximize model accuracy while satisfying the given per-sample average inference budget. Extensive experiments are conducted on four computer vision datasets (CIFAR-10, CIFAR-100, ImageNet, Cityscapes) and two NLP datasets (SST-2, AgNews). The results demonstrate that the adaptive inference by EENet can outperform the representative existing early exit techniques. We also perform a detailed visualization analysis of the comparison results to interpret the benefits of EENet.


Large Language Model-Powered Smart Contract Vulnerability Detection: New Perspectives

arXiv.org Artificial Intelligence

This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4 to dig out vulnerabilities within smart contracts based on our ongoing research. For the task of smart contract vulnerability detection, achieving practical usability hinges on identifying as many true vulnerabilities as possible while minimizing the number of false positives. Nonetheless, our empirical study reveals contradictory yet interesting findings: generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives. To mitigate this tension, we propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages $-$ generation and discrimination, for progressive detection and refinement, wherein the LLM plays dual roles, i.e., auditor and critic, respectively. The goal of auditor is to yield a broad spectrum of vulnerabilities with the hope of encompassing the correct answer, whereas the goal of critic that evaluates the validity of identified vulnerabilities is to minimize the number of false positives. Experimental results and illustrative examples demonstrate that auditor and critic work together harmoniously to yield pronounced improvements over the conventional one-stage detection. GPTLens is intuitive, strategic, and entirely LLM-driven without relying on specialist expertise in smart contracts, showcasing its methodical generality and potential to detect a broad spectrum of vulnerabilities. Our code is available at: https://github.com/git-disl/GPTLens.


An Efficiency-boosting Client Selection Scheme for Federated Learning with Fairness Guarantee

arXiv.org Artificial Intelligence

The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model's quality as well as fairness. In this paper, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a C2MAB-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets.


FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy

arXiv.org Artificial Intelligence

Federated learning is an emerging distributed machine learning framework which jointly trains a global model via a large number of local devices with data privacy protections. Its performance suffers from the non-vanishing biases introduced by the local inconsistent optimal and the rugged client-drifts by the local over-fitting. In this paper, we propose a novel and practical method, FedSpeed, to alleviate the negative impacts posed by these problems. Concretely, FedSpeed applies the prox-correction term on the current local updates to efficiently reduce the biases introduced by the prox-term, a necessary regularizer to maintain the strong local consistency. Furthermore, FedSpeed merges the vanilla stochastic gradient with a perturbation computed from an extra gradient ascent step in the neighborhood, thereby alleviating the issue of local over-fitting. Our theoretical analysis indicates that the convergence rate is related to both the communication rounds $T$ and local intervals $K$ with a upper bound $\small \mathcal{O}(1/T)$ if setting a proper local interval. Moreover, we conduct extensive experiments on the real-world dataset to demonstrate the efficiency of our proposed FedSpeed, which performs significantly faster and achieves the state-of-the-art (SOTA) performance on the general FL experimental settings than several baselines. Our code is available at \url{https://github.com/woodenchild95/FL-Simulator.git}.


Fusion of Global and Local Knowledge for Personalized Federated Learning

arXiv.org Artificial Intelligence

Personalized federated learning, as a variant of federated learning, trains customized models for clients using their heterogeneously distributed data. However, it is still inconclusive about how to design personalized models with better representation of shared global knowledge and personalized pattern. To bridge the gap, we in this paper explore personalized models with low-rank and sparse decomposition. Specifically, we employ proper regularization to extract a low-rank global knowledge representation (GKR), so as to distill global knowledge into a compact representation. Subsequently, we employ a sparse component over the obtained GKR to fuse the personalized pattern into the global knowledge. As a solution, we propose a two-stage proximal-based algorithm named \textbf{Fed}erated learning with mixed \textbf{S}parse and \textbf{L}ow-\textbf{R}ank representation (FedSLR) to efficiently search for the mixed models. Theoretically, under proper assumptions, we show that the GKR trained by FedSLR can at least sub-linearly converge to a stationary point of the regularized problem, and that the sparse component being fused can converge to its stationary point under proper settings. Extensive experiments also demonstrate the superior empirical performance of FedSLR. Moreover, FedSLR reduces the number of parameters, and lowers the down-link communication complexity, which are all desirable for federated learning algorithms. Source code is available in \url{https://github.com/huangtiansheng/fedslr}.