Goto

Collaborating Authors

 Huang, Biwei


Action-Sufficient State Representation Learning for Control with Structural Constraints

arXiv.org Artificial Intelligence

Perceived signals in real-world scenarios are usually high-dimensional and noisy, and finding and using their representation that contains essential and sufficient information required by downstream decision-making tasks will help improve computational efficiency and generalization ability in the tasks. In this paper, we focus on partially observable environments and propose to learn a minimal set of state representations that capture sufficient information for decision-making, termed \textit{Action-Sufficient state Representations} (ASRs). We build a generative environment model for the structural relationships among variables in the system and present a principled way to characterize ASRs based on structural constraints and the goal of maximizing cumulative reward in policy learning. We then develop a structured sequential Variational Auto-Encoder to estimate the environment model and extract ASRs. Our empirical results on CarRacing and VizDoom demonstrate a clear advantage of learning and using ASRs for policy learning. Moreover, the estimated environment model and ASRs allow learning behaviors from imagined outcomes in the compact latent space to improve sample efficiency.


AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning

arXiv.org Artificial Intelligence

Most approaches in reinforcement learning (RL) are data-hungry and specific to fixed environments. In this paper, we propose a principled framework for adaptive RL, called AdaRL, that adapts reliably to changes across domains. Specifically, we construct a generative environment model for the structural relationships among variables in the system and embed the changes in a compact way, which provides a clear and interpretable picture for locating what and where the changes are and how to adapt. Based on the environment model, we characterize a minimal set of representations, including both domain-specific factors and domain-shared state representations, that suffice for reliable and low-cost transfer. Moreover, we show that by explicitly leveraging a compact representation to encode changes, we can adapt the policy with only a few samples without further policy optimization in the target domain. We illustrate the efficacy of AdaRL through a series of experiments that allow for changes in different components of Cartpole and Atari games.


FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders

arXiv.org Machine Learning

We consider the problem of estimating a particular type of linear non-Gaussian model. Without resorting to the overcomplete Independent Component Analysis (ICA), we show that under some mild assumptions, the model is uniquely identified by a hybrid method. Our method leverages the advantages of constraint-based methods and independent noise-based methods to handle both confounded and unconfounded situations. The first step of our method uses the FCI procedure, which allows confounders and is able to produce asymptotically correct results. The results, unfortunately, usually determine very few unconfounded direct causal relations, because whenever it is possible to have a confounder, it will indicate it. The second step of our procedure finds the unconfounded causal edges between observed variables among only those adjacent pairs informed by the FCI results. By making use of the so-called Triad condition, the third step is able to find confounders and their causal relations with other variables. Afterward, we apply ICA on a notably smaller set of graphs to identify remaining causal relationships if needed. Extensive experiments on simulated data and real-world data validate the correctness and effectiveness of the proposed method.


Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation

arXiv.org Machine Learning

Reinforcement learning (RL) algorithms usually require a substantial amount of interaction data and perform well only for specific tasks in a fixed environment. In some scenarios such as healthcare, however, usually only few records are available for each patient, and patients may show different responses to the same treatment, impeding the application of current RL algorithms to learn optimal policies. To address the issues of mechanism heterogeneity and related data scarcity, we propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics, which are estimated by leveraging both commonalities and differences across subjects. The learned SCM enables us to counterfactually reason what would have happened had another treatment been taken. It helps avoid real (possibly risky) exploration and mitigates the issue that limited experiences lead to biased policies. We propose counterfactual RL algorithms to learn both population-level and individual-level policies. We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed approach.


Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Graphs

arXiv.org Machine Learning

Causal discovery aims to recover causal structures or models underlying the observed data. Despite its success in certain domains, most existing methods focus on causal relations between observed variables, while in many scenarios the observed ones may not be the underlying causal variables (e.g., image pixels), but are generated by latent causal variables or confounders that are causally related. To this end, in this paper, we consider Linear, Non-Gaussian Latent variable Models (LiNGLaMs), in which latent confounders are also causally related, and propose a Generalized Independent Noise (GIN) condition to estimate such latent variable graphs. Specifically, for two observed random vectors $\mathbf{Y}$ and $\mathbf{Z}$, GIN holds if and only if $\omega^{\intercal}\mathbf{Y}$ and $\mathbf{Z}$ are statistically independent, where $\omega$ is a parameter vector characterized from the cross-covariance between $\mathbf{Y}$ and $\mathbf{Z}$. From the graphical view, roughly speaking, GIN implies that causally earlier latent common causes of variables in $\mathbf{Y}$ d-separate $\mathbf{Y}$ from $\mathbf{Z}$. Interestingly, we find that the independent noise condition, i.e., if there is no confounder, causes are independent from the error of regressing the effect on the causes, can be seen as a special case of GIN. Moreover, we show that GIN helps locate latent variables and identify their causal structure, including causal directions. We further develop a recursive learning algorithm to achieve these goals. Experimental results on synthetic and real-world data demonstrate the effectiveness of our method.


Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering

Neural Information Processing Systems

State-of-the-art approaches to causal discovery usually assume a fixed underlying causal model. However, it is often the case that causal models vary across domains or subjects, due to possibly omitted factors that affect the quantitative causal effects. As a typical example, causal connectivity in the brain network has been reported to vary across individuals, with significant differences across groups of people, such as autistics and typical controls. In this paper, we develop a unified framework for causal discovery and mechanism-based group identification. In particular, we propose a specific and shared causal model (SSCM), which takes into account the variabilities of causal relations across individuals/groups and leverages their commonalities to achieve statistically reliable estimation.


Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models

arXiv.org Machine Learning

In many scientific fields, such as economics and neuroscience, we are often faced with nonstationary time series, and concerned with both finding causal relations and forecasting the values of variables of interest, both of which are particularly challenging in such nonstationary environments. In this paper, we study causal discovery and forecasting for nonstationary time series. By exploiting a particular type of state-space model to represent the processes, we show that nonstationarity helps to identify causal structure and that forecasting naturally benefits from learned causal knowledge. Specifically, we allow changes in both causal strengths and noise variances in the nonlinear state-space models, which, interestingly, renders both the causal structure and model parameters identifiable. Given the causal model, we treat forecasting as a problem in Bayesian inference in the causal model, which exploits the time-varying property of the data and adapts to new observations in a principled manner. Experimental results on synthetic and real-world data sets demonstrate the efficacy of the proposed methods.


Causal Discovery from Heterogeneous/Nonstationary Data

arXiv.org Machine Learning

It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying generating process changes across domains or over time. Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper, we develop a framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions and estimate the properties of mechanism changes. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a method to determine causal orientations by making use of independent changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. After learning the causal structure, next, we investigate how to efficiently estimate the `driving force' of the nonstationarity of a causal mechanism. That is, we aim to extract from data a low-dimensional representation of changes. The proposed methods are nonparametric, with no hard restrictions on data distributions and causal mechanisms, and do not rely on window segmentation. Furthermore, we find that data heterogeneity benefits causal structure identification even with particular types of confounders. Finally, we show the connection between heterogeneity/nonstationarity and soft intervention in causal discovery. Experimental results on various synthetic and real-world data sets (task-fMRI and stock market data) are presented to demonstrate the efficacy of the proposed methods.


Multi-domain Causal Structure Learning in Linear Systems

Neural Information Processing Systems

We study the problem of causal structure learning in linear systems from observational data given in multiple domains, across which the causal coefficients and/or the distribution of the exogenous noises may vary. The main tool used in our approach is the principle that in a causally sufficient system, the causal modules, as well as their included parameters, change independently across domains. We first introduce our approach for finding causal direction in a system comprising two variables and propose efficient methods for identifying causal direction. Then we generalize our methods to causal structure learning in networks of variables. Most of previous work in structure learning from multi-domain data assume that certain types of invariance are held in causal modules across domains. Our approach unifies the idea in those works and generalizes to the case that there is no such invariance across the domains. Our proposed methods are generally capable of identifying causal direction from fewer than ten domains. When the invariance property holds, two domains are generally sufficient.


Multi-domain Causal Structure Learning in Linear Systems

Neural Information Processing Systems

We study the problem of causal structure learning in linear systems from observational data given in multiple domains, across which the causal coefficients and/or the distribution of the exogenous noises may vary. The main tool used in our approach is the principle that in a causally sufficient system, the causal modules, as well as their included parameters, change independently across domains. We first introduce our approach for finding causal direction in a system comprising two variables and propose efficient methods for identifying causal direction. Then we generalize our methods to causal structure learning in networks of variables. Most of previous work in structure learning from multi-domain data assume that certain types of invariance are held in causal modules across domains. Our approach unifies the idea in those works and generalizes to the case that there is no such invariance across the domains. Our proposed methods are generally capable of identifying causal direction from fewer than ten domains. When the invariance property holds, two domains are generally sufficient.