Hsieh, Cheng-Yu
SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality
Hsieh, Cheng-Yu, Zhang, Jieyu, Ma, Zixian, Kembhavi, Aniruddha, Krishna, Ranjay
In the last year alone, a surge of new benchmarks to measure compositional understanding of vision-language models have permeated the machine learning ecosystem. Given an image, these benchmarks probe a model's ability to identify its associated caption amongst a set of compositional distractors. Surprisingly, we find significant biases in all these benchmarks rendering them hackable. This hackability is so dire that blind models with no access to the image outperform state-of-the-art vision-language models. To remedy this rampant vulnerability, we introduce SugarCrepe, a new benchmark for vision-language compositionality evaluation. We employ large language models, instead of rule-based templates used in previous benchmarks, to generate fluent and sensical hard negatives, and utilize an adversarial refinement mechanism to maximally reduce biases. We re-evaluate state-of-the-art models and recently proposed compositionality inducing strategies, and find that their improvements were hugely overestimated, suggesting that more innovation is needed in this important direction. We release SugarCrepe and the code for evaluation at: https://github.com/RAIVNLab/sugar-crepe.
A Survey on Programmatic Weak Supervision
Zhang, Jieyu, Hsieh, Cheng-Yu, Yu, Yue, Zhang, Chao, Ratner, Alexander
Labeling training data has become one of the major roadblocks to using machine learning. Among various weak supervision paradigms, programmatic weak supervision (PWS) has achieved remarkable success in easing the manual labeling bottleneck by programmatically synthesizing training labels from multiple potentially noisy supervision sources. This paper presents a comprehensive survey of recent advances in PWS. In particular, we give a brief introduction of the PWS learning paradigm, and review representative approaches for each component within PWS's learning workflow. In addition, we discuss complementary learning paradigms for tackling limited labeled data scenarios and how these related approaches can be used in conjunction with PWS. Finally, we identify several critical challenges that remain under-explored in the area to hopefully inspire future research directions in the field.
Evaluations and Methods for Explanation through Robustness Analysis
Hsieh, Cheng-Yu, Yeh, Chih-Kuan, Liu, Xuanqing, Ravikumar, Pradeep, Kim, Seungyeon, Kumar, Sanjiv, Hsieh, Cho-Jui
Among multiple ways of interpreting a machine learning model, measuring the importance of a set of features tied to a prediction is probably one of the most intuitive ways to explain a model. In this paper, we establish the link between a set of features to a prediction with a new evaluation criterion, robustness analysis, which measures the minimum distortion distance of adversarial perturbation. By measuring the tolerance level for an adversarial attack, we can extract a set of features that provides the most robust support for a prediction, and also can extract a set of features that contrasts the current prediction to a target class by setting a targeted adversarial attack. By applying this methodology to various prediction tasks across multiple domains, we observe the derived explanations are indeed capturing the significant feature set qualitatively and quantitatively.
On the (In)fidelity and Sensitivity of Explanations
Yeh, Chih-Kuan, Hsieh, Cheng-Yu, Suggala, Arun, Inouye, David I., Ravikumar, Pradeep K.
We consider objective evaluation measures of saliency explanations for complex black-box machine learning models. We propose simple robust variants of two notions that have been considered in recent literature: (in)fidelity, and sensitivity. We analyze optimal explanations with respect to both these measures, and while the optimal explanation for sensitivity is a vacuous constant explanation, the optimal explanation for infidelity is a novel combination of two popular explanation methods. By varying the perturbation distribution that defines infidelity, we obtain novel explanations by optimizing infidelity, which we show to out-perform existing explanations in both quantitative and qualitative measurements. Another salient question given these measures is how to modify any given explanation to have better values with respect to these measures.
How Sensitive are Sensitivity-Based Explanations?
Yeh, Chih-Kuan, Hsieh, Cheng-Yu, Suggala, Arun Sai, Inouye, David, Ravikumar, Pradeep
We propose a simple objective evaluation measure for explanations of a complex black-box machine learning model. While most such model explanations have largely been evaluated via qualitative measures, such as how humans might qualitatively perceive the explanations, it is vital to also consider objective measures such as the one we propose in this paper. Our evaluation measure that we naturally call sensitivity is simple: it characterizes how an explanation changes as we vary the test input, and depending on how we measure these changes, and how we vary the input, we arrive at different notions of sensitivity. We also provide a calculus for deriving sensitivity of complex explanations in terms of that for simpler explanations, which thus allows an easy computation of sensitivities for yet to be proposed explanations. One advantage of an objective evaluation measure is that we can optimize the explanation with respect to the measure: we show that (1) any given explanation can be simply modified to improve its sensitivity with just a modest deviation from the original explanation, and (2) gradient based explanations of an adversarially trained network are less sensitive. Perhaps surprisingly, our experiments show that explanations optimized to have lower sensitivity can be more faithful to the model predictions.
A Deep Model With Local Surrogate Loss for General Cost-Sensitive Multi-Label Learning
Hsieh, Cheng-Yu (National Taiwan University) | Lin, Yi-An (National Taiwan University) | Lin, Hsuan-Tien (National Taiwan University)
Multi-label learning is an important machine learning problem with a wide range of applications. The variety of criteria for satisfying different application needs calls for cost-sensitive algorithms, which can adapt to different criteria easily. Nevertheless, because of the sophisticated nature of the criteria for multi-label learning, cost-sensitive algorithms for general criteria are hard to design, and current cost-sensitive algorithms can at most deal with some special types of criteria. In this work, we propose a novel cost-sensitive multi-label learning model for any general criteria. Our key idea within the model is to iteratively estimate a surrogate loss that approximates the sophisticated criterion of interest near some local neighborhood, and use the estimate to decide a descent direction for optimization. The key idea is then coupled with deep learning to form our proposed model. Experimental results validate that our proposed model is superior to existing cost-sensitive algorithms and existing deep learning models across different criteria.