Not enough data to create a plot.
Try a different view from the menu above.
Howell, Taylor
RoboPianist: Dexterous Piano Playing with Deep Reinforcement Learning
Zakka, Kevin, Wu, Philipp, Smith, Laura, Gileadi, Nimrod, Howell, Taylor, Peng, Xue Bin, Singh, Sumeet, Tassa, Yuval, Florence, Pete, Zeng, Andy, Abbeel, Pieter
Replicating human-like dexterity in robot hands represents one of the largest open problems in robotics. Reinforcement learning is a promising approach that has achieved impressive progress in the last few years; however, the class of problems it has typically addressed corresponds to a rather narrow definition of dexterity as compared to human capabilities. To address this gap, we investigate piano-playing, a skill that challenges even the human limits of dexterity, as a means to test high-dimensional control, and which requires high spatial and temporal precision, and complex finger coordination and planning. We introduce RoboPianist, a system that enables simulated anthropomorphic hands to learn an extensive repertoire of 150 piano pieces where traditional model-based optimization struggles. We additionally introduce an open-sourced environment, benchmark of tasks, interpretable evaluation metrics, and open challenges for future study. Our website featuring videos, code, and datasets is available at https://kzakka.com/robopianist/
Fast Contact-Implicit Model-Predictive Control
Cleac'h, Simon Le, Howell, Taylor, Yang, Shuo, Lee, Chi-Yen, Zhang, John, Bishop, Arun, Schwager, Mac, Manchester, Zachary
We present a general approach for controlling robotic systems that make and break contact with their environments. Contact-implicit model predictive control (CI-MPC) generalizes linear MPC to contact-rich settings by utilizing a bi-level planning formulation with lower-level contact dynamics formulated as time-varying linear complementarity problems (LCPs) computed using strategic Taylor approximations about a reference trajectory. These dynamics enable the upper-level planning problem to reason about contact timing and forces, and generate entirely new contact-mode sequences online. To achieve reliable and fast numerical convergence, we devise a structure-exploiting interior-point solver for these LCP contact dynamics and a custom trajectory optimizer for the tracking problem. We demonstrate real-time solution rates for CI-MPC and the ability to generate and track non-periodic behaviours in hardware experiments on a quadrupedal robot. We also show that the controller is robust to model mismatch and can respond to disturbances by discovering and exploiting new contact modes across a variety of robotic systems in simulation, including a pushbot, planar hopper, planar quadruped, and planar biped.
Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo
Howell, Taylor, Gileadi, Nimrod, Tunyasuvunakool, Saran, Zakka, Kevin, Erez, Tom, Tassa, Yuval
We introduce MuJoCo MPC (MJPC), an open-source, interactive application and software framework for real-time predictive control, based on MuJoCo physics. MJPC allows the user to easily author and solve complex robotics tasks, and currently supports three shooting-based planners: derivative-based iLQG and Gradient Descent, and a simple derivative-free method we call Predictive Sampling. Predictive Sampling was designed as an elementary baseline, mostly for its pedagogical value, but turned out to be surprisingly competitive with the more established algorithms. This work does not present algorithmic advances, and instead, prioritises performant algorithms, simple code, and accessibility of model-based methods via intuitive and interactive software. MJPC is available at: github.com/deepmind/mujoco_mpc, a video summary can be viewed at: dpmd.ai/mjpc.