Plotting

 Hobson, J. Allan


Models Wanted: Must Fit Dimensions of Sleep and Dreaming

Neural Information Processing Systems

During waking and sleep, the brain and mind undergo a tightly linked and precisely specified set of changes in state. At the level of neurons, this process has been modeled by variations of Volterra-Lotka equations for cyclic fluctuations of brainstem cell populations. However, neural network models based upon rapidly developing knowledge ofthe specific population connectivities and their differential responses to drugs have not yet been developed. Furthermore, only the most preliminary attempts have been made to model across states. Some of our own attempts to link rapid eye movement (REM) sleep neurophysiology and dream cognition using neural network approaches are summarized in this paper.


Network Model of State-Dependent Sequencing

Neural Information Processing Systems

A network model with temporal sequencing and state-dependent modulatory featuresis described. The model is motivated by neurocognitive data characterizing different states of waking and sleeping. Computer studies demonstrate how unique states of sequencing can exist within the same network under different aminergic and cholinergic modulatory influences. Relationships between state-dependent modulation, memory, sequencing and learning are discussed.


Models Wanted: Must Fit Dimensions of Sleep and Dreaming

Neural Information Processing Systems

During waking and sleep, the brain and mind undergo a tightly linked and precisely specified set of changes in state. At the level of neurons, this process has been modeled by variations of Volterra-Lotka equations for cyclic fluctuations of brainstem cell populations. However, neural network models based upon rapidly developing knowledge ofthe specific population connectivities and their differential responses to drugs have not yet been developed. Furthermore, only the most preliminary attempts have been made to model across states. Some of our own attempts to link rapid eye movement (REM) sleep neurophysiology and dream cognition using neural network approaches are summarized in this paper.


Models Wanted: Must Fit Dimensions of Sleep and Dreaming

Neural Information Processing Systems

During waking and sleep, the brain and mind undergo a tightly linked and precisely specified set of changes in state. At the level of neurons, this process has been modeled by variations of Volterra-Lotka equations for cyclic fluctuations of brainstem cell populations. However, neural network models based upon rapidly developing knowledge ofthe specific population connectivities and their differential responses to drugs have not yet been developed. Furthermore, only the most preliminary attempts have been made to model across states. Some of our own attempts to link rapid eye movement (REM) sleep neurophysiology and dream cognition using neural network approaches are summarized in this paper.


Network Model of State-Dependent Sequencing

Neural Information Processing Systems

A network model with temporal sequencing and state-dependent modulatory features is described. The model is motivated by neurocognitive data characterizing different states of waking and sleeping. Computer studies demonstrate how unique states of sequencing can exist within the same network under different aminergic and cholinergic modulatory influences. Relationships between state-dependent modulation, memory, sequencing and learning are discussed.