Not enough data to create a plot.
Try a different view from the menu above.
Hirayama, Makoto
Inverse Dynamics of Speech Motor Control
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Kawato, Mitsuo
This inverse dynamics model allows the use of a faster speech mot.or control scheme, which can be applied to phoneme-tospeech synthesisvia musclo-skeletal system dynamics, or to future use in speech recognition. The forward acoustic model, which is the mapping from articulator trajectories t.o the acoustic parameters, was improved by adding velocity and voicing information inputs to distinguish acollst.ic
Inverse Dynamics of Speech Motor Control
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Kawato, Mitsuo
This inverse dynamics model allows the use of a faster speech mot.or control scheme, which can be applied to phoneme-tospeech synthesis via musclo-skeletal system dynamics, or to future use in speech recognition. The forward acoustic model, which is the mapping from articulator trajectories t.o the acoustic parameters, was improved by adding velocity and voicing information inputs to distinguish acollst.ic
Physiologically Based Speech Synthesis
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Honda, Kiyoshi, Koike, Yasuharu, Kawato, Mitsuo
This study demonstrates a paradigm for modeling speech production basedon neural networks. Using physiological data from speech utterances, a neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior that allows articulator trajectories to be generated from motor commands constrained by phoneme input strings and global performance parameters. From these movement trajectories, a second neuralnetwork generates PARCOR parameters that are then used to synthesize the speech acoustics.
Physiologically Based Speech Synthesis
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Honda, Kiyoshi, Koike, Yasuharu, Kawato, Mitsuo
This study demonstrates a paradigm for modeling speech production based on neural networks. Using physiological data from speech utterances, a neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior that allows articulator trajectories to be generated from motor commands constrained by phoneme input strings and global performance parameters. From these movement trajectories, a second neural network generates PARCOR parameters that are then used to synthesize the speech acoustics.
Forward Dynamics Modeling of Speech Motor Control Using Physiological Data
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Kawato, Mitsuo, Jordan, Michael I.
We propose a paradigm for modeling speech production based on neural networks. We focus on characteristics of the musculoskeletal system. Using real physiological data - articulator movements and EMG from muscle activitya neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior. After learning, simulated perturbations, were used to asses properties of the acquired model, such as natural frequency, damping, and interarticulator couplings. Finally, a cascade neural network is used to generate continuous motor commands from a sequence of discrete articulatory targets.
Forward Dynamics Modeling of Speech Motor Control Using Physiological Data
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Kawato, Mitsuo, Jordan, Michael I.
We propose a paradigm for modeling speech production based on neural networks. We focus on characteristics of the musculoskeletal system. Using real physiological data - articulator movements and EMG from muscle activitya neuralnetwork learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior. After learning, simulated perturbations, were used to asses properties of the acquired model, such as natural frequency, damping, and interarticulator couplings. Finally, a cascade neural network is used to generate continuous motor commands from a sequence of discrete articulatory targets.