Not enough data to create a plot.
Try a different view from the menu above.
Hinton, Geoffrey E.
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Mnih, Volodymyr, Larochelle, Hugo, Hinton, Geoffrey E.
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems.
Generating more realistic images using gated MRF's
Ranzato, Marc', aurelio, Mnih, Volodymyr, Hinton, Geoffrey E.
Probabilistic models of natural images are usually evaluated by measuring performance on rather indirect tasks, such as denoising and inpainting. A more direct way to evaluate a generative model is to draw samples from it and to check whether statistical properties of the samples match the statistics of natural images. This method is seldom used with high-resolution images, because current models produce samples that are very different from natural images, as assessed by even simple visual inspection. We investigate the reasons for this failure and we show that by augmenting existing models so that there are two sets of latent variables, one set modelling pixel intensities and the other set modelling image-specific pixel covariances, we are able to generate high-resolution images that look much more realistic than before. The overall model can be interpreted as a gated MRF where both pair-wise dependencies and mean intensities of pixels are modulated by the states of latent variables. Finally, we confirm that if we disallow weight-sharing between receptive fields that overlap each other, the gated MRF learns more efficient internal representations, as demonstrated in several recognition tasks.
Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine
Dahl, George, Ranzato, Marc', aurelio, Mohamed, Abdel-rahman, Hinton, Geoffrey E.
Straightforward application of Deep Belief Nets (DBNs) to acoustic modeling produces a rich distributed representation of speech data that is useful for recognition and yields impressive results on the speaker-independent TIMIT phone recognition task. However, the first-layer Gaussian-Bernoulli Restricted Boltzmann Machine (GRBM) has an important limitation, shared with mixtures of diagonal-covariance Gaussians: GRBMs treat different components of the acoustic input vector as conditionally independent given the hidden state. The mean-covariance restricted Boltzmann machine (mcRBM), first introduced for modeling natural images, is a much more representationally efficient and powerful way of modeling the covariance structure of speech data. Every configuration of the precision units of the mcRBM specifies a different precision matrix for the conditional distribution over the acoustic space. In this work, we use the mcRBM to learn features of speech data that serve as input into a standard DBN. The mcRBM features combined with DBNs allow us to achieve a phone error rate of 20.5\%, which is superior to all published results on speaker-independent TIMIT to date.
Learning to combine foveal glimpses with a third-order Boltzmann machine
Larochelle, Hugo, Hinton, Geoffrey E.
We describe a model based on a Boltzmann machine with third-order connections that can learn how to accumulate information about a shape over several fixations. The model uses a retina that only has enough high resolution pixels to cover a small area of the image, so it must decide on a sequence of fixations and it must combine the glimpse" at each fixation with the location of the fixation before integrating the information with information from other glimpses of the same object. We evaluate this model on a synthetic dataset and two image classification datasets, showing that it can perform at least as well as a model trained on whole images."
Gated Softmax Classification
Memisevic, Roland, Zach, Christopher, Pollefeys, Marc, Hinton, Geoffrey E.
We describe a log-bilinear" model that computes class probabilities by combining an input vector multiplicatively with a vector of binary latent variables. Even though the latent variables can take on exponentially many possible combinations of values, we can efficiently compute the exact probability of each class by marginalizing over the latent variables. This makes it possible to get the exact gradient of the log likelihood. The bilinear score-functions are defined using a three-dimensional weight tensor, and we show that factorizing this tensor allows the model to encode invariances inherent in a task by learning a dictionary of invariant basis functions. Experiments on a set of benchmark problems show that this fully probabilistic model can achieve classification performance that is competitive with (kernel) SVMs, backpropagation, and deep belief nets."
Generative versus discriminative training of RBMs for classification of fMRI images
Schmah, Tanya, Hinton, Geoffrey E., Small, Steven L., Strother, Stephen, Zemel, Richard S.
Neuroimaging datasets often have a very large number of voxels and a very small number of training cases, which means that overfitting of models for this data can become a very serious problem. Working with a set of fMRI images from a study on stroke recovery, we consider a classification task for which logistic regression performs poorly, even when L1-or L2-regularized. We show that much better discrimination can be achieved by fitting a generative model to each separate condition and then seeing which model is most likely to have generated the data. We compare discriminative training of exactly the same set of models, and we also consider convex blends of generative and discriminative training.
3D Object Recognition with Deep Belief Nets
Nair, Vinod, Hinton, Geoffrey E.
We introduce a new type of Deep Belief Net and evaluate it on a 3D object recognition task. The top-level model is a third-order Boltzmann machine, trained using a hybrid algorithm that combines both generative and discriminative gradients. Performance is evaluated on the NORB database(normalized-uniform version), which contains stereo-pair images of objects under different lighting conditions and viewpoints. Our model achieves 6.5% error on the test set, which is close to the best published result for NORB (5.9%) using a convolutional neural net that has built-in knowledge of translation invariance. It substantially outperforms shallow models such as SVMs (11.6%). DBNs are especially suited for semi-supervised learning, and to demonstrate this we consider a modified version of the NORB recognition task in which additional unlabeled images are created by applying small translations to the images in the database. With the extra unlabeled data (and the same amount of labeled data as before), our model achieves 5.2% error, making it the current best result for NORB.
Using matrices to model symbolic relationship
Sutskever, Ilya, Hinton, Geoffrey E.
We describe a way of learning matrix representations of objects and relationships. The goal of learning is to allow multiplication of matrices to represent symbolic relationships between objects and symbolic relationships between relationships, which is the main novelty of the method. We demonstrate that this leads to excellent generalization in two different domains: modular arithmetic and family relationships. We show that the same system can learn first-order propositions such as $(2, 5) \member +\!3$ or $(Christopher, Penelope)\member has\_wife$, and higher-order propositions such as $(3, +\!3) \member plus$ and $(+\!3, -\!3) \member inverse$ or $(has\_husband, has\_wife)\in higher\_oppsex$. We further demonstrate that the system understands how higher-order propositions are related to first-order ones by showing that it can correctly answer questions about first-order propositions involving the relations $+\!3$ or $has\_wife$ even though it has not been trained on any first-order examples involving these relations.
A Scalable Hierarchical Distributed Language Model
Mnih, Andriy, Hinton, Geoffrey E.
Neural probabilistic language models (NPLMs) have been shown to be competitive with and occasionally superior to the widely-used n-gram language models. The main drawback of NPLMs is their extremely long training and testing times. Morin and Bengio have proposed a hierarchical language model built around a binary tree of words that was two orders of magnitude faster than the non-hierarchical language model it was based on. However, it performed considerably worse than its non-hierarchical counterpart in spite of using a word tree created using expert knowledge. We introduce a fast hierarchical language model along with a simple feature-based algorithm for automatic construction of word trees from the data. We then show that the resulting models can outperform non-hierarchical models and achieve state-of-the-art performance.