Plotting

 Hinton, Geoffrey E.


TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations

Neural Information Processing Systems

We describe a model that can recognize two-dimensional shapes in an unsegmented image, independent of their orientation, position, and scale. The model, called TRAFFIC, efficiently represents the structural relation between an object and each of its component features by encoding the fixed viewpoint-invariant transformation from the feature's reference frame to the object's in the weights of a connectionist network. Using a hierarchy of such transformations, with increasing complexity of features at each successive layer, the network can recognize multiple objects in parallel. An implementation ofTRAFFIC is described, along with experimental results demonstrating the network's ability to recognize constellations of stars in a viewpoint-invariant manner. 1 INTRODUCTION A key goal of machine vision is to recognize familiar objects in an unsegmented image, independent of their orientation, position, and scale. Massively parallel models have long been used for lower-level vision tasks, such as primitive feature extraction and stereo depth.




GEMINI: Gradient Estimation Through Matrix Inversion After Noise Injection

Neural Information Processing Systems

Learning procedures that measure how random perturbations of unit activities correlatewith changes in reinforcement are inefficient but simple to implement in hardware. Procedures like back-propagation (Rumelhart, Hinton and Williams, 1986) which compute how changes in activities affect theoutput error are much more efficient, but require more complex hardware. GEMINI is a hybrid procedure for multilayer networks, which shares many of the implementation advantages of correlational reinforcement proceduresbut is more efficient. GEMINI injects noise only at the first hidden layer and measures the resultant effect on the output error. A linear network associated with each hidden layer iteratively inverts the matrix which relates the noise to the error change, thereby obtaining the error-derivatives. No back-propagation is involved, thus allowing unknown non-linearitiesin the system. Two simulations demonstrate the effectiveness of GEMINI.


GEMINI: Gradient Estimation Through Matrix Inversion After Noise Injection

Neural Information Processing Systems

Learning procedures that measure how random perturbations of unit activities correlate with changes in reinforcement are inefficient but simple to implement in hardware. Procedures like back-propagation (Rumelhart, Hinton and Williams, 1986) which compute how changes in activities affect the output error are much more efficient, but require more complex hardware. GEMINI is a hybrid procedure for multilayer networks, which shares many of the implementation advantages of correlational reinforcement procedures but is more efficient. GEMINI injects noise only at the first hidden layer and measures the resultant effect on the output error. A linear network associated with each hidden layer iteratively inverts the matrix which relates the noise to the error change, thereby obtaining the error-derivatives. No back-propagation is involved, thus allowing unknown non-linearities in the system. Two simulations demonstrate the effectiveness of GEMINI.


Learning Representations by Recirculation

Neural Information Processing Systems

One criticism of back-propagation is that it requires a teacher to specify the desired output vectors. It is possible to dispense with the teacher in the case of "encoder" networks2 in which the desired output vector is identical with the input vector (see Figure 1). The purpose of an encoder network is to learn good "codes" in the intermediate, hidden units. If for, example, there are less hidden units than input units, an encoder network will perform data-compression3.