Plotting

 Hettiarachchi, Ramith


Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning

arXiv.org Artificial Intelligence

Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources.


QuATON: Quantization Aware Training of Optical Neurons

arXiv.org Artificial Intelligence

Optical neural architectures (ONAs) use coding elements with optimized physical parameters to perform intelligent measurements. However, fabricating ONAs while maintaining design performances is challenging. Limitations in fabrication techniques often limit the realizable precision of the trained parameters. Physical constraints may also limit the range of values the physical parameters can hold. Thus, ONAs should be trained within the implementable constraints. However, such physics-based constraints reduce the training objective to a constrained optimization problem, making it harder to optimize with existing gradient-based methods. To alleviate these critical issues that degrade performance from simulation to realization we propose a physics-informed quantization-aware training framework. Our approach accounts for the physical constraints during the training process, leading to robust designs. We evaluate our approach on an ONA proposed in the literature, named a diffractive deep neural network (D2NN), for all-optical phase imaging and for classification of phase objects. With extensive experiments on different quantization levels and datasets, we show that our approach leads to ONA designs that are robust to quantization noise.