Not enough data to create a plot.
Try a different view from the menu above.
He, Ying
Dynamic Link Prediction for New Nodes in Temporal Graph Networks
Zhu, Xiaobo, Wu, Yan, Zhang, Qinhu, Chen, Zhanheng, He, Ying
Modelling temporal networks for dynamic link prediction of new nodes has many real-world applications, such as providing relevant item recommendations to new customers in recommender systems and suggesting appropriate posts to new users on social platforms. Unlike old nodes, new nodes have few historical links, which poses a challenge for the dynamic link prediction task. Most existing dynamic models treat all nodes equally and are not specialized for new nodes, resulting in suboptimal performances. In this paper, we consider dynamic link prediction of new nodes as a few-shot problem and propose a novel model based on the meta-learning principle to effectively mitigate this problem. Specifically, we develop a temporal encoder with a node-level span memory to obtain a new node embedding, and then we use a predictor to determine whether the new node generates a link. To overcome the few-shot challenge, we incorporate the encoder-predictor into the meta-learning paradigm, which can learn two types of implicit information during the formation of the temporal network through span adaptation and node adaptation. The acquired implicit information can serve as model initialisation and facilitate rapid adaptation to new nodes through a fine-tuning process on just a few links. Experiments on three publicly available datasets demonstrate the superior performance of our model compared to existing state-of-the-art methods.
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
Zeng, Yiming, Qian, Yue, Zhu, Zhiyu, Hou, Junhui, Yuan, Hui, He, Ying
This paper addresses the problem of computing dense correspondence between 3D shapes in the form of point clouds, which is a challenging and fundamental problem in computer vision and digital geometry processing. Conventional approaches often solve the problem in a supervised manner, requiring massive annotated data, which is difficult and/or expensive to obtain. Motivated by the intuition that one can transform two aligned point clouds to each other more easily and meaningfully than a misaligned pair, we propose CorrNet3D -- the first unsupervised and end-to-end deep learning-based framework -- to drive the learning of dense correspondence by means of deformation-like reconstruction to overcome the need for annotated data. Specifically, CorrNet3D consists of a deep feature embedding module and two novel modules called correspondence indicator and symmetric deformation. Feeding a pair of raw point clouds, our model first learns the pointwise features and passes them into the indicator to generate a learnable correspondence matrix used to permute the input pair. The symmetric deformer, with an additional regularized loss, transforms the two permuted point clouds to each other to drive the unsupervised learning of the correspondence. The extensive experiments on both synthetic and real-world datasets of rigid and non-rigid 3D shapes show our CorrNet3D outperforms state-of-the-art methods to a large extent, including those taking meshes as input. CorrNet3D is a flexible framework in that it can be easily adapted to supervised learning if annotated data are available.