Goto

Collaborating Authors

 He, Xuehai


Multimodal Graph Transformer for Multimodal Question Answering

arXiv.org Artificial Intelligence

Despite the success of Transformer models in vision and language tasks, they often learn knowledge from enormous data implicitly and cannot utilize structured input data directly. On the other hand, structured learning approaches such as graph neural networks (GNNs) that integrate prior information can barely compete with Transformer models. In this work, we aim to benefit from both worlds and propose a novel Multimodal Graph Transformer for question answering tasks that requires performing reasoning across multiple modalities. We introduce a graph-involved plug-and-play quasi-attention mechanism to incorporate multimodal graph information, acquired from text and visual data, to the vanilla self-attention as effective prior. In particular, we construct the text graph, dense region graph, and semantic graph to generate adjacency matrices, and then compose them with input vision and language features to perform downstream reasoning. Such a way of regularizing self-attention with graph information significantly improves the inferring ability and helps align features from different modalities. We validate the effectiveness of Multimodal Graph Transformer over its Transformer baselines on GQA, VQAv2, and MultiModalQA datasets.


Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis

arXiv.org Artificial Intelligence

Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. Attribute-binding requires the model to associate objects with the correct attribute descriptions, and compositional skills require the model to combine and generate multiple concepts into a single image. In this work, we improve these two aspects of T2I models to achieve more accurate image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, by manipulating the cross-attention representations based on linguistic insights, we can better preserve the compositional semantics in the generated image. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a significant 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process. Text-to-Image Synthesis (T2I) is to generate natural and faithful images given a text prompt as input. Recently, there has been a significant advancement in the quality of generated images by extremely large-scale vision-language models, such as DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022), and Parti (Yu et al., 2022).


Transfer Learning or Self-supervised Learning? A Tale of Two Pretraining Paradigms

arXiv.org Machine Learning

Pretraining has become a standard technique in computer vision and natural language processing, which usually helps to improve performance substantially. Previously, the most dominant pretraining method is transfer learning (TL), which uses labeled data to learn a good representation network. Recently, a new pretraining approach -- self-supervised learning (SSL) -- has demonstrated promising results on a wide range of applications. SSL does not require annotated labels. It is purely conducted on input data by solving auxiliary tasks defined on the input data examples. The current reported results show that in certain applications, SSL outperforms TL and the other way around in other applications. There has not been a clear understanding on what properties of data and tasks render one approach outperforms the other. Without an informed guideline, ML researchers have to try both methods to find out which one is better empirically. It is usually time-consuming to do so. In this work, we aim to address this problem. We perform a comprehensive comparative study between SSL and TL regarding which one works better under different properties of data and tasks, including domain difference between source and target tasks, the amount of pretraining data, class imbalance in source data, and usage of target data for additional pretraining, etc. The insights distilled from our comparative studies can help ML researchers decide which method to use based on the properties of their applications.