Plotting

 He, Peng


Revisiting Communication Efficiency in Multi-Agent Reinforcement Learning from the Dimensional Analysis Perspective

arXiv.org Artificial Intelligence

In this work, we introduce a novel perspective, i.e., dimensional analysis, to address the challenge of communication efficiency in Multi-Agent Reinforcement Learning (MARL). Our findings reveal that simply optimizing the content and timing of communication at sending end is insufficient to fully resolve communication efficiency issues. Even after applying optimized and gated messages, dimensional redundancy and confounders still persist in the integrated message embeddings at receiving end, which negatively impact communication quality and decision-making. To address these challenges, we propose Dimensional Rational Multi-Agent Communication (DRMAC), designed to mitigate both dimensional redundancy and confounders in MARL. DRMAC incorporates a redundancy-reduction regularization term to encourage the decoupling of information across dimensions within the learned representations of integrated messages. Additionally, we introduce a dimensional mask that dynamically adjusts gradient weights during training to eliminate the influence of decision-irrelevant dimensions. We evaluate DRMAC across a diverse set of multi-agent tasks, demonstrating its superior performance over existing state-of-the-art methods in complex scenarios. Furthermore, the plug-and-play nature of DRMAC's key modules highlights its generalizable performance, serving as a valuable complement rather than a replacement for existing multi-agent communication strategies.


M2I2: Learning Efficient Multi-Agent Communication via Masked State Modeling and Intention Inference

arXiv.org Artificial Intelligence

Communication is essential in coordinating the behaviors of multiple agents. However, existing methods primarily emphasize content, timing, and partners for information sharing, often neglecting the critical aspect of integrating shared information. This gap can significantly impact agents' ability to understand and respond to complex, uncertain interactions, thus affecting overall communication efficiency. To address this issue, we introduce M2I2, a novel framework designed to enhance the agents' capabilities to assimilate and utilize received information effectively. M2I2 equips agents with advanced capabilities for masked state modeling and joint-action prediction, enriching their perception of environmental uncertainties and facilitating the anticipation of teammates' intentions. This approach ensures that agents are furnished with both comprehensive and relevant information, bolstering more informed and synergistic behaviors. Moreover, we propose a Dimensional Rational Network, innovatively trained via a meta-learning paradigm, to identify the importance of dimensional pieces of information, evaluating their contributions to decision-making and auxiliary tasks. Then, we implement an importance-based heuristic for selective information masking and sharing. This strategy optimizes the efficiency of masked state modeling and the rationale behind information sharing. We evaluate M2I2 across diverse multi-agent tasks, the results demonstrate its superior performance, efficiency, and generalization capabilities, over existing state-of-the-art methods in various complex scenarios.


A Robust Multisource Remote Sensing Image Matching Method Utilizing Attention and Feature Enhancement Against Noise Interference

arXiv.org Machine Learning

Image matching is a fundamental and critical task of multisource remote sensing image applications. However, remote sensing images are susceptible to various noises. Accordingly, how to effectively achieve accurate matching in noise images is a challenging problem. To solve this issue, we propose a robust multisource remote sensing image matching method utilizing attention and feature enhancement against noise interference. In the first stage, we combine deep convolution with the attention mechanism of transformer to perform dense feature extraction, constructing feature descriptors with higher discriminability and robustness. Subsequently, we employ a coarse-to-fine matching strategy to achieve dense matches. In the second stage, we introduce an outlier removal network based on a binary classification mechanism, which can establish effective and geometrically consistent correspondences between images; through weighting for each correspondence, inliers vs. outliers classification are performed, as well as removing outliers from dense matches. Ultimately, we can accomplish more efficient and accurate matches. To validate the performance of the proposed method, we conduct experiments using multisource remote sensing image datasets for comparison with other state-of-the-art methods under different scenarios, including noise-free, additive random noise, and periodic stripe noise. Comparative results indicate that the proposed method has a more well-balanced performance and robustness. The proposed method contributes a valuable reference for solving the difficult problem of noise image matching.


Spectral2Spectral: Image-spectral Similarity Assisted Spectral CT Deep Reconstruction without Reference

arXiv.org Artificial Intelligence

Spectral computed tomography based on a photon-counting detector (PCD) attracts more and more attentions since it has the capability to provide more accurate identification and quantitative analysis for biomedical materials. The limited number of photons within narrow energy bins leads to imaging results of low signal-noise ratio. The existing supervised deep reconstruction networks for CT reconstruction are difficult to address these challenges because it is usually impossible to acquire noise-free clinical images with clear structures as references. In this paper, we propose an iterative deep reconstruction network to synergize unsupervised method and data priors into a unified framework, named as Spectral2Spectral. Our Spectral2Spectral employs an unsupervised deep training strategy to obtain high-quality images from noisy data in an end-to-end fashion. The structural similarity prior within image-spectral domain is refined as a regularization term to further constrain the network training. The weights of neural network are automatically updated to capture image features and structures within the iterative process. Three large-scale preclinical datasets experiments demonstrate that the Spectral2spectral reconstructs better image quality than other the state-of-the-art methods.


Demystifying the Global Convergence Puzzle of Learning Over-parameterized ReLU Nets in Very High Dimensions

arXiv.org Machine Learning

This theoretical paper is devoted to developing a rigorous theory for demystifying the global convergence phenomenon in a challenging scenario: learning over-parameterized Rectified Linear Unit (ReLU) nets for very high dimensional dataset under very mild assumptions. A major ingredient of our analysis is a fine-grained analysis of random activation matrices. The essential virtue of dissecting activation matrices is that it bridges the dynamics of optimization and angular distribution in high-dimensional data space. This angle-based detailed analysis leads to asymptotic characterizations of gradient norm and directional curvature of objective function at each gradient descent iteration, revealing that the empirical loss function enjoys nice geometrical properties in the overparameterized setting. Along the way, we significantly improve existing theoretical bounds on both over-parameterization condition and learning rate with very mild assumptions for learning very high dimensional data. Moreover, we uncover the role of the geometrical and spectral properties of the input data in determining desired over-parameterization size and global convergence rate. All these clues allow us to discover a novel geometric picture of nonconvex optimization in deep learning: angular distribution in high-dimensional data space $\mapsto$ spectrums of overparameterized activation matrices $\mapsto$ favorable geometrical properties of empirical loss landscape $\mapsto$ global convergence phenomenon. Furthremore, our theoretical results imply that gradient-based nonconvex optimization algorithms have much stronger statistical guarantees with much milder over-parameterization condition than exisiting theory states for learning very high dimensional data, which is rarely explored so far.


Improving Conversational Recommendation System by Pretraining on Billions Scale of Knowledge Graph

arXiv.org Artificial Intelligence

Conversational Recommender Systems (CRSs) in E-commerce platforms aim to recommend items to users via multiple conversational interactions. Click-through rate (CTR) prediction models are commonly used for ranking candidate items. However, most CRSs are suffer from the problem of data scarcity and sparseness. To address this issue, we propose a novel knowledge-enhanced deep cross network (K-DCN), a two-step (pretrain and fine-tune) CTR prediction model to recommend items. We first construct a billion-scale conversation knowledge graph (CKG) from information about users, items and conversations, and then pretrain CKG by introducing knowledge graph embedding method and graph convolution network to encode semantic and structural information respectively.To make the CTR prediction model sensible of current state of users and the relationship between dialogues and items, we introduce user-state and dialogue-interaction representations based on pre-trained CKG and propose K-DCN.In K-DCN, we fuse the user-state representation, dialogue-interaction representation and other normal feature representations via deep cross network, which will give the rank of candidate items to be recommended.We experimentally prove that our proposal significantly outperforms baselines and show it's real application in Alime.


Single-Layer Graph Convolutional Networks For Recommendation

arXiv.org Machine Learning

Graph Convolutional Networks (GCNs) and their variants have received significant attention and achieved start-of-the-art performances on various recommendation tasks. However, many existing GCN models tend to perform recursive aggregations among all related nodes, which arises severe computational burden. Moreover, they favor multi-layer architectures in conjunction with complicated modeling techniques. Though effective, the excessive amount of model parameters largely hinder their applications in real-world recommender systems. To this end, in this paper, we propose the single-layer GCN model which is able to achieve superior performance along with remarkably less complexity compared with existing models. Our main contribution is three-fold. First, we propose a principled similarity metric named distribution-aware similarity (DA similarity), which can guide the neighbor sampling process and evaluate the quality of the input graph explicitly. We also prove that DA similarity has a positive correlation with the final performance, through both theoretical analysis and empirical simulations. Second, we propose a simplified GCN architecture which employs a single GCN layer to aggregate information from the neighbors filtered by DA similarity and then generates the node representations. Moreover, the aggregation step is a parameter-free operation, such that it can be done in a pre-processing manner to further reduce red the training and inference costs. Third, we conduct extensive experiments on four datasets. The results verify that the proposed model outperforms existing GCN models considerably and yields up to a few orders of magnitude speedup in training, in terms of the recommendation performance.


Perceiving Group Themes from Collective Social and Behavioral Information

AAAI Conferences

Collective social and behavioral information commonly exists in nature. There is a widespread intuitive sense that the characteristics of these social and behavioral information are to some extend related to the themes (or semantics) of the activities or targets. In this paper, we explicitly validate the interplay of collective social behavioral information and group themes using a large scale real dataset of online groups, and demonstrate the possibility of perceiving group themes from collective social and behavioral information. We propose a REgularized miXEd Regression (REXER) model based on matrix factorization to infer hierarchical semantics (including both group category and group labels) from collective social and behavioral information of group members. We extensively evaluate the proposed method in a large scale real online group dataset. For the prediction of group themes, the proposed REXER achieves satisfactory performances in various criterions. More specifically, we can predict the category of a group (among 6 categories) purely based on the collective social and behavioral information of the group with the Precision@1 to be 55.16% , without any assistance from group labels or conversation contents. We also show, perhaps counterintuitively, that the collective social and behavioral information is more reliable than the titles and labels of groups for inferring the group categories.