Not enough data to create a plot.
Try a different view from the menu above.
He, Conghui
SongComposer: A Large Language Model for Lyric and Melody Composition in Song Generation
Ding, Shuangrui, Liu, Zihan, Dong, Xiaoyi, Zhang, Pan, Qian, Rui, He, Conghui, Lin, Dahua, Wang, Jiaqi
We present SongComposer, an innovative LLM designed for song composition. It could understand and generate melodies and lyrics in symbolic song representations, by leveraging the capability of LLM. Existing music-related LLM treated the music as quantized audio signals, while such implicit encoding leads to inefficient encoding and poor flexibility. In contrast, we resort to symbolic song representation, the mature and efficient way humans designed for music, and enable LLM to explicitly compose songs like humans. In practice, we design a novel tuple design to format lyric and three note attributes (pitch, duration, and rest duration) in the melody, which guarantees the correct LLM understanding of musical symbols and realizes precise alignment between lyrics and melody. To impart basic music understanding to LLM, we carefully collected SongCompose-PT, a large-scale song pretraining dataset that includes lyrics, melodies, and paired lyrics-melodies in either Chinese or English. After adequate pre-training, 10K carefully crafted QA pairs are used to empower the LLM with the instruction-following capability and solve diverse tasks. With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation, outperforming advanced LLMs like GPT-4.
LongWanjuan: Towards Systematic Measurement for Long Text Quality
Lv, Kai, Liu, Xiaoran, Guo, Qipeng, Yan, Hang, He, Conghui, Qiu, Xipeng, Lin, Dahua
The quality of training data are crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there's a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks. The code and dataset are available at https://github.com/OpenLMLab/LongWanjuan.
SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models
Gao, Peng, Zhang, Renrui, Liu, Chris, Qiu, Longtian, Huang, Siyuan, Lin, Weifeng, Zhao, Shitian, Geng, Shijie, Lin, Ziyi, Jin, Peng, Zhang, Kaipeng, Shao, Wenqi, Xu, Chao, He, Conghui, He, Junjun, Shao, Hao, Lu, Pan, Li, Hongsheng, Qiao, Yu
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization
Zhao, Zhiyuan, Wang, Bin, Ouyang, Linke, Dong, Xiaoyi, Wang, Jiaqi, He, Conghui
Multimodal large language models have made significant advancements in recent years, yet they still suffer from a common issue known as the "hallucination problem", in which the models generate textual descriptions that inaccurately depict or entirely fabricate content from associated images. This paper introduces a novel solution, Hallucination-Aware Direct Preference Optimization (HA-DPO), which reframes the hallucination problem as a preference selection task. The model is trained to favor the non-hallucinating response when presented with two responses of the same image (one accurate and one hallucinatory). Furthermore, this paper proposes an efficient pipeline for constructing positive~(non-hallucinatory) and negative~(hallucinatory) sample pairs, ensuring a high-quality, style-consistent dataset for robust preference learning. When applied to three mainstream multimodal models, HA-DPO significantly reduced hallucination issues and amplified the models' generalization capabilities. Notably, the MiniGPT-4 model, when enhanced with HA-DPO, demonstrated a substantial improvement: POPE accuracy rose from 51.13% to 86.13% (an absolute improvement of 35%), and the MME score surged from 932.00 to 1326.46 (a relative improvement of 42.32%). The codes, models, and datasets are made accessible at https://opendatalab.github.io/HA-DPO.
VIGC: Visual Instruction Generation and Correction
Wang, Bin, Wu, Fan, Han, Xiao, Peng, Jiahui, Zhong, Huaping, Zhang, Pan, Dong, Xiaoyi, Li, Weijia, Li, Wei, Wang, Jiaqi, He, Conghui
The integration of visual encoders and large language models (LLMs) has driven recent progress in multimodal large language models (MLLMs). However, the scarcity of high-quality instruction-tuning data for vision-language tasks remains a challenge. The current leading paradigm, such as LLaVA, relies on language-only GPT-4 to generate data, which requires pre-annotated image captions and detection bounding boxes, suffering from understanding image details. A practical solution to this problem would be to utilize the available multimodal large language models (MLLMs) to generate instruction data for vision-language tasks. However, it's worth noting that the currently accessible MLLMs are not as powerful as their LLM counterparts, as they tend to produce inadequate responses and generate false information. As a solution for addressing the current issue, this paper proposes the Visual Instruction Generation and Correction (VIGC) framework that enables multimodal large language models to generate instruction-tuning data and progressively enhance its quality on-the-fly. Specifically, Visual Instruction Generation (VIG) guides the vision-language model to generate diverse instruction-tuning data. To ensure generation quality, Visual Instruction Correction (VIC) adopts an iterative update mechanism to correct any inaccuracies in data produced by VIG, effectively reducing the risk of hallucination. Leveraging the diverse, high-quality data generated by VIGC, we finetune mainstream models and validate data quality based on various evaluations. Experimental results demonstrate that VIGC not only compensates for the shortcomings of language-only data generation methods, but also effectively enhances the benchmark performance. The models, datasets, and code are available at https://opendatalab.github.io/VIGC.
Parrot Captions Teach CLIP to Spot Text
Lin, Yiqi, He, Conghui, Wang, Alex Jinpeng, Wang, Bin, Li, Weijia, Shou, Mike Zheng
Despite CLIP being the foundation model in numerous vision-language applications, the CLIP suffers from a severe text spotting bias. Such bias causes CLIP models to `Parrot' the visual text embedded within images while disregarding the authentic visual semantics. We uncover that in the most popular image-text dataset LAION-2B, the captions also densely parrot (spell) the text embedded in images. Our analysis shows that around 50% of images are embedded with visual text content, and around 30% of captions words are in these embedded visual content. Based on such observation, we thoroughly inspect the different released versions of CLIP models and verify that the visual text is the dominant factor in measuring the LAION-style image-text similarity for these models. To examine whether these parrot captions shape the text spotting bias, we train a series of CLIP models with LAION subsets curated by different parrot-caption-oriented criteria. We show that training with parrot captions easily shapes such bias but harms the expected visual-language representation learning in CLIP models. This suggests that it is urgent to revisit either the design of CLIP-like models or the existing image-text dataset curation pipeline built on CLIP score filtering.
InternLM-XComposer2: Mastering Free-form Text-Image Composition and Comprehension in Vision-Language Large Model
Dong, Xiaoyi, Zhang, Pan, Zang, Yuhang, Cao, Yuhang, Wang, Bin, Ouyang, Linke, Wei, Xilin, Zhang, Songyang, Duan, Haodong, Cao, Maosong, Zhang, Wenwei, Li, Yining, Yan, Hang, Gao, Yang, Zhang, Xinyue, Li, Wei, Li, Jingwen, Chen, Kai, He, Conghui, Zhang, Xingcheng, Qiao, Yu, Lin, Dahua, Wang, Jiaqi
We introduce InternLM-XComposer2, a cutting-edge vision-language model excelling in free-form text-image composition and comprehension. This model goes beyond conventional vision-language understanding, adeptly crafting interleaved text-image content from diverse inputs like outlines, detailed textual specifications, and reference images, enabling highly customizable content creation. InternLM-XComposer2 proposes a Partial LoRA (PLoRA) approach that applies additional LoRA parameters exclusively to image tokens to preserve the integrity of pre-trained language knowledge, striking a balance between precise vision understanding and text composition with literary talent. Experimental results demonstrate the superiority of InternLM-XComposer2 based on InternLM2-7B in producing high-quality long-text multi-modal content and its exceptional vision-language understanding performance across various benchmarks, where it not only significantly outperforms existing multimodal models but also matches or even surpasses GPT-4V and Gemini Pro in certain assessments. This highlights its remarkable proficiency in the realm of multimodal understanding. The InternLM-XComposer2 model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
MiChao-HuaFen 1.0: A Specialized Pre-trained Corpus Dataset for Domain-specific Large Models
Liu, Yidong, Shang, FuKai, Wang, Fang, Xu, Rui, Wang, Jun, Li, Wei, Li, Yao, He, Conghui
With the advancement of deep learning technologies, general-purpose large models such as GPT-4 have demonstrated exceptional capabilities across various domains. Nevertheless, there remains a demand for high-quality, domain-specific outputs in areas like healthcare, law, and finance. This paper first evaluates the existing large models for specialized domains and discusses their limitations. To cater to the specific needs of certain domains, we introduce the ``MiChao-HuaFen 1.0'' pre-trained corpus dataset, tailored for the news and governmental sectors. The dataset, sourced from publicly available internet data from 2022, underwent multiple rounds of cleansing and processing to ensure high quality and reliable origins, with provisions for consistent and stable updates. This dataset not only supports the pre-training of large models for Chinese vertical domains but also aids in propelling deep learning research and applications in related fields.
WanJuan: A Comprehensive Multimodal Dataset for Advancing English and Chinese Large Models
He, Conghui, Jin, Zhenjiang, Xu, Chao, Qiu, Jiantao, Wang, Bin, Li, Wei, Yan, Hang, Wang, Jiaqi, Lin, Dahua
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale.
MLLM-DataEngine: An Iterative Refinement Approach for MLLM
Zhao, Zhiyuan, Ouyang, Linke, Wang, Bin, Huang, Siyuan, Zhang, Pan, Dong, Xiaoyi, Wang, Jiaqi, He, Conghui
Despite the great advance of Multimodal Large Language Models (MLLMs) in both instruction dataset building and benchmarking, the independence of training and evaluation makes current MLLMs hard to further improve their capability under the guidance of evaluation results with a relatively low human cost. In this paper, we propose MLLM-DataEngine, a novel closed-loop system that bridges data generation, model training, and evaluation. Within each loop iteration, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results, then generate a proper incremental dataset for the next training iteration and enhance the model capability iteratively. Compared with previous data collection methods which are separate from the benchmarking, the data generated by MLLM-DataEngine shows better targeting, quality, and correctness. For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data within each incremental dataset based on the benchmarking results. For quality, we resort to GPT-4 to generate high-quality data with each given data type. For correctness, prompt design is critical for the data generation results. Rather than previous hand-crafted prompt, we propose an Interactive Prompt Optimization strategy, which optimizes the prompt with the multi-round interaction between human and GPT, and improve the correctness of generated data greatly. Through extensive experiments, we find our MLLM-DataEngine could boost the MLLM capability in a targeted and automatic manner, with only a few human participation. We hope it could be a general solution for the following MLLMs building. The MLLM-DataEngine has been open-sourced and is now available at https://github.com/opendatalab/MLLM-DataEngine.