Hansen, Steven
Fast deep reinforcement learning using online adjustments from the past
Hansen, Steven, Pritzel, Alexander, Sprechmann, Pablo, Barreto, Andre, Blundell, Charles
We propose Ephemeral Value Adjusments (EVA): a means of allowing deep reinforcement learning agents to rapidly adapt to experience in their replay buffer. EVA shifts the value predicted by a neural network with an estimate of the value function found by prioritised sweeping over experience tuples from the replay buffer near the current state. EVA combines a number of recent ideas around combining episodic memory-like structures into reinforcement learning agents: slot-based storage, content-based retrieval, and memory-based planning. We show that EVA is performant on a demonstration task and Atari games.
Unsupervised Control Through Non-Parametric Discriminative Rewards
Warde-Farley, David, Van de Wiele, Tom, Kulkarni, Tejas, Ionescu, Catalin, Hansen, Steven, Mnih, Volodymyr
Learning to control an environment without hand-crafted rewards or expert data remains challenging and is at the frontier of reinforcement learning research. We present an unsupervised learning algorithm to train agents to achieve perceptually-specified goals using only a stream of observations and actions. Our agent simultaneously learns a goal-conditioned policy and a goal achievement reward function that measures how similar a state is to the goal state. This dual optimization leads to a co-operative game, giving rise to a learned reward function that reflects similarity in controllable aspects of the environment instead of distance in the space of observations. We demonstrate the efficacy of our agent to learn, in an unsupervised manner, to reach a diverse set of goals on three domains -- Atari, the DeepMind Control Suite and DeepMind Lab.