Hanneke, Steve
Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games
Hanneke, Steve, Livni, Roi, Moran, Shay
Which classes can be learned properly in the online model? -- that is, by an algorithm that at each round uses a predictor from the concept class. While there are simple and natural cases where improper learning is necessary, it is natural to ask how complex must the improper predictors be in such cases. Can one always achieve nearly optimal mistake/regret bounds using "simple" predictors? In this work, we give a complete characterization of when this is possible, thus settling an open problem which has been studied since the pioneering works of Angluin (1987) and Littlestone (1988). More precisely, given any concept class C and any hypothesis class H, we provide nearly tight bounds (up to a log factor) on the optimal mistake bounds for online learning C using predictors from H. Our bound yields an exponential improvement over the previously best known bound by Chase and Freitag (2020). As applications, we give constructive proofs showing that (i) in the realizable setting, a near-optimal mistake bound (up to a constant factor) can be attained by a sparse majority-vote of proper predictors, and (ii) in the agnostic setting, a near-optimal regret bound (up to a log factor) can be attained by a randomized proper algorithm. A technical ingredient of our proof which may be of independent interest is a generalization of the celebrated Minimax Theorem (von Neumann, 1928) for binary zero-sum games. A simple game which fails to satisfy Minimax is "Guess the Larger Number", where each player picks a number and the larger number wins. The payoff matrix is infinite triangular. We show this is the only obstruction: if a game does not contain triangular submatrices of unbounded sizes then the Minimax Theorem holds. This generalizes von Neumann's Minimax Theorem by removing requirements of finiteness (or compactness), and captures precisely the games of interest in online learning.
Stable Sample Compression Schemes: New Applications and an Optimal SVM Margin Bound
Hanneke, Steve, Kontorovich, Aryeh
We analyze a family of supervised learning algorithms based on sample compression schemes that are stable, in the sense that removing points from the training set which were not selected for the compression set does not alter the resulting classifier. We use this technique to derive a variety of novel or improved data-dependent generalization bounds for several learning algorithms. In particular, we prove a new margin bound for SVM, removing a log factor. The new bound is provably optimal.
A Theory of Universal Learning
Bousquet, Olivier, Hanneke, Steve, Moran, Shay, van Handel, Ramon, Yehudayoff, Amir
How quickly can a given class of concepts be learned from examples? It is common to measure the performance of a supervised machine learning algorithm by plotting its "learning curve", that is, the decay of the error rate as a function of the number of training examples. However, the classical theoretical framework for understanding learnability, the PAC model of Vapnik-Chervonenkis and Valiant, does not explain the behavior of learning curves: the distribution-free PAC model of learning can only bound the upper envelope of the learning curves over all possible data distributions. This does not match the practice of machine learning, where the data source is typically fixed in any given scenario, while the learner may choose the number of training examples on the basis of factors such as computational resources and desired accuracy. In this paper, we study an alternative learning model that better captures such practical aspects of machine learning, but still gives rise to a complete theory of the learnable in the spirit of the PAC model. More precisely, we consider the problem of universal learning, which aims to understand the performance of learning algorithms on every data distribution, but without requiring uniformity over the distribution. The main result of this paper is a remarkable trichotomy: there are only three possible rates of universal learning. More precisely, we show that the learning curves of any given concept class decay either at an exponential, linear, or arbitrarily slow rates. Moreover, each of these cases is completely characterized by appropriate combinatorial parameters, and we exhibit optimal learning algorithms that achieve the best possible rate in each case. For concreteness, we consider in this paper only the realizable case, though analogous results are expected to extend to more general learning scenarios.
A No-Free-Lunch Theorem for MultiTask Learning
Hanneke, Steve, Kpotufe, Samory
Multitask learning and related areas such as multi-source domain adaptation address modern settings where datasets from $N$ related distributions $\{P_t\}$ are to be combined towards improving performance on any single such distribution ${\cal D}$. A perplexing fact remains in the evolving theory on the subject: while we would hope for performance bounds that account for the contribution from multiple tasks, the vast majority of analyses result in bounds that improve at best in the number $n$ of samples per task, but most often do not improve in $N$. As such, it might seem at first that the distributional settings or aggregation procedures considered in such analyses might be somehow unfavorable; however, as we show, the picture happens to be more nuanced, with interestingly hard regimes that might appear otherwise favorable. In particular, we consider a seemingly favorable classification scenario where all tasks $P_t$ share a common optimal classifier $h^*,$ and which can be shown to admit a broad range of regimes with improved oracle rates in terms of $N$ and $n$. Some of our main results are as follows: $\bullet$ We show that, even though such regimes admit minimax rates accounting for both $n$ and $N$, no adaptive algorithm exists; that is, without access to distributional information, no algorithm can guarantee rates that improve with large $N$ for $n$ fixed. $\bullet$ With a bit of additional information, namely, a ranking of tasks $\{P_t\}$ according to their distance to a target ${\cal D}$, a simple rank-based procedure can achieve near optimal aggregations of tasks' datasets, despite a search space exponential in $N$. Interestingly, the optimal aggregation might exclude certain tasks, even though they all share the same $h^*$.
Proper Learning, Helly Number, and an Optimal SVM Bound
Bousquet, Olivier, Hanneke, Steve, Moran, Shay, Zhivotovskiy, Nikita
The classical PAC sample complexity bounds are stated for any Empirical Risk Minimizer (ERM) and contain an extra logarithmic factor $\log(1/{\epsilon})$ which is known to be necessary for ERM in general. It has been recently shown by Hanneke (2016) that the optimal sample complexity of PAC learning for any VC class C is achieved by a particular improper learning algorithm, which outputs a specific majority-vote of hypotheses in C. This leaves the question of when this bound can be achieved by proper learning algorithms, which are restricted to always output a hypothesis from C. In this paper we aim to characterize the classes for which the optimal sample complexity can be achieved by a proper learning algorithm. We identify that these classes can be characterized by the dual Helly number, which is a combinatorial parameter that arises in discrete geometry and abstract convexity. In particular, under general conditions on C, we show that the dual Helly number is bounded if and only if there is a proper learner that obtains the optimal joint dependence on $\epsilon$ and $\delta$. As further implications of our techniques we resolve a long-standing open problem posed by Vapnik and Chervonenkis (1974) on the performance of the Support Vector Machine by proving that the sample complexity of SVM in the realizable case is $\Theta((n/{\epsilon})+(1/{\epsilon})\log(1/{\delta}))$, where $n$ is the dimension. This gives the first optimal PAC bound for Halfspaces achieved by a proper learning algorithm, and moreover is computationally efficient.
Universal Bayes consistency in metric spaces
Hanneke, Steve, Kontorovich, Aryeh, Sabato, Sivan, Weiss, Roi
We show that a recently proposed 1-nearest-neighbor-based multiclass learning algorithm is universally strongly Bayes consistent in all metric spaces where such Bayes consistency is possible, making it an optimistically universal Bayes-consistent learner. This is the first learning algorithm known to enjoy this property; by comparison, $k$-NN and its variants are not generally universally Bayes consistent, except under additional structural assumptions, such as an inner product, a norm, finite doubling dimension, or a Besicovitch-type property. The metric spaces in which universal Bayes consistency is possible are the essentially separable ones --- a new notion that we define, which is more general than standard separability. The existence of metric spaces that are not essentially separable is independent of the ZFC axioms of set theory. We prove that essential separability exactly characterizes the existence of a universal Bayes-consistent learner for the given metric space. In particular, this yields the first impossibility result for universal Bayes consistency. Taken together, these positive and negative results resolve the open problems posed in Kontorovich, Sabato, Weiss (2017).
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Montasser, Omar, Hanneke, Steve, Srebro, Nathan
We study the question of learning an adversarially robust predictor. We show that any hypothesis class $\mathcal{H}$ with finite VC dimension is robustly PAC learnable with an improper learning rule. The requirement of being improper is necessary as we exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are not robustly PAC learnable with any proper learning rule.
Sample Compression for Real-Valued Learners
Hanneke, Steve, Kontorovich, Aryeh, Sadigurschi, Menachem
We give an algorithmically efficient version of the learner-to-compression scheme conversion in Moran and Yehudayoff (2016). In extending this technique to real-valued hypotheses, we also obtain an efficient regression-to-bounded sample compression converter. To our knowledge, this is the first general compressed regression result (regardless of efficiency or boundedness) guaranteeing uniform approximate reconstruction. Along the way, we develop a generic procedure for constructing weak real-valued learners out of abstract regressors; this may be of independent interest. In particular, this result sheds new light on an open question of H. Simon (1997). We show applications to two regression problems: learning Lipschitz and bounded-variation functions.
A New Lower Bound for Agnostic Learning with Sample Compression Schemes
Hanneke, Steve, Kontorovich, Aryeh
We establish a tight characterization of the worst-case rates for the excess risk of agnostic learning with sample compression schemes and for uniform convergence for agnostic sample compression schemes. In particular, we find that the optimal rates of convergence for size-$k$ agnostic sample compression schemes are of the form $\sqrt{\frac{k \log(n/k)}{n}}$, which contrasts with agnostic learning with classes of VC dimension $k$, where the optimal rates are of the form $\sqrt{\frac{k}{n}}$.