Guyon, Isabelle
Signature Verification using a "Siamese" Time Delay Neural Network
Bromley, Jane, Guyon, Isabelle, LeCun, Yann, Säckinger, Eduard, Shah, Roopak
The aim of the project was to make a signature verification system based on the NCR 5990 Signature Capture Device (a pen-input tablet) and to use 80 bytes or less for signature feature storage in order that the features can be stored on the magnetic strip of a credit-card. Verification using a digitizer such as the 5990, which generates spatial coordinates as a function of time, is known as dynamic verification. Much research has been carried out on signature verification. Function-based methods, which fit a function tothe pen trajectory, have been found to lead to higher performance while parameter-based methods, which extract some number of parameters from a signa-737 738 Bromley, Guyon, Le Cun, Sackinger, and Shah ture, make a lower requirement on memory space for signature storage (see Lorette and Plamondon (1990) for comments). We chose to use the complete time extent of the signature, with the preprocessing described below, as input to a neural network, andto allow the network to compress the information.
Signature Verification using a "Siamese" Time Delay Neural Network
Bromley, Jane, Guyon, Isabelle, LeCun, Yann, Säckinger, Eduard, Shah, Roopak
The aim of the project was to make a signature verification system based on the NCR 5990 Signature Capture Device (a pen-input tablet) and to use 80 bytes or less for signature feature storage in order that the features can be stored on the magnetic strip of a credit-card. Verification using a digitizer such as the 5990, which generates spatial coordinates as a function of time, is known as dynamic verification. Much research has been carried out on signature verification.
Neural Network Implementation of Admission Control
Milito, Rodolfo A., Guyon, Isabelle, Solla, Sara A.
A feedforward layered network implements a mapping required to control an unknown stochastic nonlinear dynamical system. Training is based on a novel approach that combines stochastic approximation ideas with backpropagation. Themethod is applied to control admission into a queueing system operating in a time-varying environment.
Neural Network Implementation of Admission Control
Milito, Rodolfo A., Guyon, Isabelle, Solla, Sara A.
A feedforward layered network implements a mapping required to control an unknown stochastic nonlinear dynamical system. Training is based on a novel approach that combines stochastic approximation ideas with backpropagation. The method is applied to control admission into a queueing system operating in a time-varying environment.
Neural Network Recognizer for Hand-Written Zip Code Digits
Denker, John S., Gardner, W. R., Graf, Hans Peter, Henderson, Donnie, Howard, R. E., Hubbard, W., Jackel, L. D., Baird, Henry S., Guyon, Isabelle
This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.
Neural Network Recognizer for Hand-Written Zip Code Digits
Denker, John S., Gardner, W. R., Graf, Hans Peter, Henderson, Donnie, Howard, R. E., Hubbard, W., Jackel, L. D., Baird, Henry S., Guyon, Isabelle
This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.
Neural Network Recognizer for Hand-Written Zip Code Digits
Denker, John S., Gardner, W. R., Graf, Hans Peter, Henderson, Donnie, Howard, R. E., Hubbard, W., Jackel, L. D., Baird, Henry S., Guyon, Isabelle
This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.
High Order Neural Networks for Efficient Associative Memory Design
Dreyfus, Gérard, Guyon, Isabelle, Nadal, Jean-Pierre, Personnaz, Léon
The designed networks exhibit the desired associative memory function: perfect storage and retrieval of pieces of information and/or sequences of information of any complexity. INTRODUCTION In the field of information processing, an important class of potential applications of neural networks arises from their ability to perform as associative memories. Since the publication of J. Hopfield's seminal paper1, investigations of the storage and retrieval properties of recurrent networks have led to a deep understanding of their properties. The basic limitations of these networks are the following: - their storage capacity is of the order of the number of neurons; - they are unable to handle structured problems; - they are unable to classify non-linearly separable data. American Institute of Physics 1988 234 In order to circumvent these limitations, one has to introduce additional non-linearities. This can be done either by using "hidden", nonlinear units, or by considering multi-neuron interactions2. This paper presents learning rules for networks with multiple interactions, allowing the storage and retrieval, either of static pieces of information (autoassociative memory), or of temporal sequences (associative memory), while preventing an explosive growth of the number of synaptic coefficients. AUTOASSOCIATIVEMEMORY The problem that will be addressed in this paragraph is how to design an autoassociative memory with a recurrent (or feedback) neural network when the number p of prototypes is large as compared to the number n of neurons. We consider a network of n binary neurons, operating in a synchronous mode, with period t.