Plotting

 Gupta, Saurabh


One-shot Visual Imitation via Attributed Waypoints and Demonstration Augmentation

arXiv.org Artificial Intelligence

In this paper, we analyze the behavior of existing techniques and design new solutions for the problem of one-shot visual imitation. In this setting, an agent must solve a novel instance of a novel task given just a single visual demonstration. Our analysis reveals that current methods fall short because of three errors: the DAgger problem arising from purely offline training, last centimeter errors in interacting with objects, and mis-fitting to the task context rather than to the actual task. This motivates the design of our modular approach where we a) separate out task inference (what to do) from task execution (how to do it), and b) develop data augmentation and generation techniques to mitigate mis-fitting. The former allows us to leverage hand-crafted motor primitives for task execution which side-steps the DAgger problem and last centimeter errors, while the latter gets the model to focus on the task rather than the task context. Our model gets 100% and 48% success rates on two recent benchmarks, improving upon the current state-of-the-art by absolute 90% and 20% respectively.


RB2: Robotic Manipulation Benchmarking with a Twist

arXiv.org Artificial Intelligence

Benchmarks offer a scientific way to compare algorithms using objective performance metrics. Good benchmarks have two features: (a) they should be widely useful for many research groups; (b) and they should produce reproducible findings. In robotic manipulation research, there is a trade-off between reproducibility and broad accessibility. If the benchmark is kept restrictive (fixed hardware, objects), the numbers are reproducible but the setup becomes less general. On the other hand, a benchmark could be a loose set of protocols (e.g. object sets) but the underlying variation in setups make the results non-reproducible. In this paper, we re-imagine benchmarking for robotic manipulation as state-of-the-art algorithmic implementations, alongside the usual set of tasks and experimental protocols. The added baseline implementations will provide a way to easily recreate SOTA numbers in a new local robotic setup, thus providing credible relative rankings between existing approaches and new work. However, these local rankings could vary between different setups. To resolve this issue, we build a mechanism for pooling experimental data between labs, and thus we establish a single global ranking for existing (and proposed) SOTA algorithms. Our benchmark, called Ranking-Based Robotics Benchmark (RB2), is evaluated on tasks that are inspired from clinically validated Southampton Hand Assessment Procedures. Our benchmark was run across two different labs and reveals several surprising findings. For example, extremely simple baselines like open-loop behavior cloning, outperform more complicated models (e.g. closed loop, RNN, Offline-RL, etc.) that are preferred by the field. We hope our fellow researchers will use RB2 to improve their research's quality and rigor.


Human Hands as Probes for Interactive Object Understanding

arXiv.org Artificial Intelligence

Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric videos. We demonstrate that observation of what human hands interact with and how can provide both the relevant data and the necessary supervision. Attending to hands, readily localizes and stabilizes active objects for learning and reveals places where interactions with objects occur. Analyzing the hands shows what we can do to objects and how. We apply these basic principles on the EPIC-KITCHENS dataset, and successfully learn state-sensitive features, and object affordances (regions of interaction and afforded grasps), purely by observing hands in egocentric videos.


SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency

arXiv.org Artificial Intelligence

In this paper, we explore how we can build upon the data and models of Internet images and use them to adapt to robot vision without requiring any extra labels. We present a framework called Self-supervised Embodied Active Learning (SEAL). It utilizes perception models trained on internet images to learn an active exploration policy. The observations gathered by this exploration policy are labelled using 3D consistency and used to improve the perception model. We build and utilize 3D semantic maps to learn both action and perception in a completely self-supervised manner. The semantic map is used to compute an intrinsic motivation reward for training the exploration policy and for labelling the agent observations using spatio-temporal 3D consistency and label propagation. We demonstrate that the SEAL framework can be used to close the action-perception loop: it improves object detection and instance segmentation performance of a pretrained perception model by just moving around in training environments and the improved perception model can be used to improve Object Goal Navigation.


Learned Visual Navigation for Under-Canopy Agricultural Robots

arXiv.org Artificial Intelligence

We describe a system for visually guided autonomous navigation of under-canopy farm robots. Low-cost under-canopy robots can drive between crop rows under the plant canopy and accomplish tasks that are infeasible for over-the-canopy drones or larger agricultural equipment. However, autonomously navigating them under the canopy presents a number of challenges: unreliable GPS and LiDAR, high cost of sensing, challenging farm terrain, clutter due to leaves and weeds, and large variability in appearance over the season and across crop types. We address these challenges by building a modular system that leverages machine learning for robust and generalizable perception from monocular RGB images from low-cost cameras, and model predictive control for accurate control in challenging terrain. Our system, CropFollow, is able to autonomously drive 485 meters per intervention on average, outperforming a state-of-the-art LiDAR based system (286 meters per intervention) in extensive field testing spanning over 25 km.


Multi-objective Reinforcement Learning based approach for User-Centric Power Optimization in Smart Home Environments

arXiv.org Artificial Intelligence

Smart homes require every device inside them to be connected with each other at all times, which leads to a lot of power wastage on a daily basis. As the devices inside a smart home increase, it becomes difficult for the user to control or operate every individual device optimally. Therefore, users generally rely on power management systems for such optimization but often are not satisfied with the results. In this paper, we present a novel multi-objective reinforcement learning framework with two-fold objectives of minimizing power consumption and maximizing user satisfaction. The framework explores the trade-off between the two objectives and converges to a better power management policy when both objectives are considered while finding an optimal policy. We experiment on real-world smart home data, and show that the multi-objective approaches: i) establish trade-off between the two objectives, ii) achieve better combined user satisfaction and power consumption than single-objective approaches. We also show that the devices that are used regularly and have several fluctuations in device modes at regular intervals should be targeted for optimization, and the experiments on data from other smart homes fetch similar results, hence ensuring transfer-ability of the proposed framework.


imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks

arXiv.org Artificial Intelligence

Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN - an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.


Semantic Visual Navigation by Watching YouTube Videos

arXiv.org Artificial Intelligence

Semantic cues and statistical regularities in real-world environment layouts can improve efficiency for navigation in novel environments. This paper learns and leverages such semantic cues for navigating to objects of interest in novel environments, by simply watching YouTube videos. This is challenging because YouTube videos don't come with labels for actions or goals, and may not even showcase optimal behavior. Our proposed method tackles these challenges through the use of Q-learning on pseudo-labeled transition quadruples (image, action, next image, reward). We show that such off-policy Q-learning from passive data is able to learn meaningful semantic cues for navigation. These cues, when used in a hierarchical navigation policy, lead to improved efficiency at the ObjectGoal task in visually realistic simulations. We improve upon end-to-end RL methods by 66%, while using 250x fewer interactions. Code, data, and models will be made available.


Semantic Curiosity for Active Visual Learning

arXiv.org Artificial Intelligence

In this paper, we study the task of embodied interactive learning for object detection. Given a set of environments (and some labeling budget), our goal is to learn an object detector by having an agent select what data to obtain labels for. How should an exploration policy decide which trajectory should be labeled? One possibility is to use a trained object detector's failure cases as an external reward. However, this will require labeling millions of frames required for training RL policies, which is infeasible. Instead, we explore a self-supervised approach for training our exploration policy by introducing a notion of semantic curiosity. Our semantic curiosity policy is based on a simple observation -- the detection outputs should be consistent. Therefore, our semantic curiosity rewards trajectories with inconsistent labeling behavior and encourages the exploration policy to explore such areas. The exploration policy trained via semantic curiosity generalizes to novel scenes and helps train an object detector that outperforms baselines trained with other possible alternatives such as random exploration, prediction-error curiosity, and coverage-maximizing exploration.


Neural Topological SLAM for Visual Navigation

arXiv.org Artificial Intelligence

This paper studies the problem of image-goal navigation which involves navigating to the location indicated by a goal image in a novel previously unseen environment. To tackle this problem, we design topological representations for space that effectively leverage semantics and afford approximate geometric reasoning. At the heart of our representations are nodes with associated semantic features, that are interconnected using coarse geometric information. We describe supervised learning-based algorithms that can build, maintain and use such representations under noisy actuation. Experimental study in visually and physically realistic simulation suggests that our method builds effective representations that capture structural regularities and efficiently solve long-horizon navigation problems. We observe a relative improvement of more than 50% over existing methods that study this task.