Not enough data to create a plot.
Try a different view from the menu above.
Gupta, Anshul
Robi Butler: Remote Multimodal Interactions with Household Robot Assistant
Xiao, Anxing, Janaka, Nuwan, Hu, Tianrun, Gupta, Anshul, Li, Kaixin, Yu, Cunjun, Hsu, David
In this paper, we introduce Robi Butler, a novel household robotic system that enables multimodal interactions with remote users. Building on the advanced communication interfaces, Robi Butler allows users to monitor the robot's status, send text or voice instructions, and select target objects by hand pointing. At the core of our system is a high-level behavior module, powered by Large Language Models (LLMs), that interprets multimodal instructions to generate action plans. These plans are composed of a set of open vocabulary primitives supported by Vision Language Models (VLMs) that handle both text and pointing queries. The integration of the above components allows Robi Butler to ground remote multimodal instructions in the real-world home environment in a zero-shot manner. We demonstrate the effectiveness and efficiency of this system using a variety of daily household tasks that involve remote users giving multimodal instructions. Additionally, we conducted a user study to analyze how multimodal interactions affect efficiency and user experience during remote human-robot interaction and discuss the potential improvements.
Font Identification in Historical Documents Using Active Learning
Gupta, Anshul, Gutierrez-Osuna, Ricardo, Christy, Matthew, Furuta, Richard, Mandell, Laura
Identifying the type of font (e.g., Roman, Blackletter) used in historical documents can help optical character recognition (OCR) systems produce more accurate text transcriptions. Towards this end, we present an active-learning strategy that can significantly reduce the number of labeled samples needed to train a font classifier. Our approach extracts image-based features that exploit geometric differences between fonts at the word level, and combines them into a bag-of-word representation for each page in a document. We evaluate six sampling strategies based on uncertainty, dissimilarity and diversity criteria, and test them on a database containing over 3,000 historical documents with Blackletter, Roman and Mixed fonts. Our results show that a combination of uncertainty and diversity achieves the highest predictive accuracy (89% of test cases correctly classified) while requiring only a small fraction of the data (17%) to be labeled. We discuss the implications of this result for mass digitization projects of historical documents.
Automatic Assessment of OCR Quality in Historical Documents
Gupta, Anshul (Texas A&M University) | Gutierrez-Osuna, Ricardo (Texas A&M University) | Christy, Matthew (Texas A&M University) | Capitanu, Boris (University of Illinois at Urbana-Champaign) | Auvil, Loretta (University of Illinois at Urbana-Champaign) | Grumbach, Liz (Texas A&M University) | Furuta, Richard (Texas A&M University) | Mandell, Laura (Texas A&M University)
Mass digitization of historical documents is a challenging problem for optical character recognition (OCR) tools. Issues include noisy backgrounds and faded text due to aging, border/marginal noise, bleed-through, skewing, warping, as well as irregular fonts and page layouts. As a result, OCR tools often produce a large number of spurious bounding boxes (BBs) in addition to those that correspond to words in the document. This paper presents an iterative classification algorithm to automatically label BBs (i.e., as text or noise) based on their spatial distribution and geometry. The approach uses a rule-base classifier to generate initial text/noise labels for each BB, followed by an iterative classifier that refines the initial labels by incorporating local information to each BB, its spatial location, shape and size. When evaluated on a dataset containing over 72,000 manually-labeled BBs from 159 historical documents, the algorithm can classify BBs with 0.95 precision and 0.96 recall. Further evaluation on a collection of 6,775 documents with ground-truth transcriptions shows that the algorithm can also be used to predict document quality (0.7 correlation) and improve OCR transcriptions in 85% of the cases.