Not enough data to create a plot.
Try a different view from the menu above.
Gupta, Abhishek
Metric Effects based on Fluctuations in values of k in Nearest Neighbor Regressor
Gupta, Abhishek, Joshi, Raunak, Kanvinde, Nandan, Gerela, Pinky, Laban, Ronald Melwin
Regression branch of Machine Learning purely focuses on prediction of continuous values. The supervised learning branch has many regression based methods with parametric and non-parametric learning models. In this paper we aim to target a very subtle point related to distance based regression model. The distance based model used is K-Nearest Neighbors Regressor which is a supervised non-parametric method. The point that we want to prove is the effect of k parameter of the model and its fluctuations affecting the metrics. The metrics that we use are Root Mean Squared Error and R-Squared Goodness of Fit with their visual representation of values with respect to k values.
State of AI Ethics Report (Volume 6, February 2022)
Gupta, Abhishek, Wright, Connor, Ganapini, Marianna Bergamaschi, Sweidan, Masa, Butalid, Renjie
This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.
Change Detection of Markov Kernels with Unknown Post Change Kernel using Maximum Mean Discrepancy
Chen, Hao, Tang, Jiacheng, Gupta, Abhishek
In this paper, we develop a new change detection algorithm for detecting a change in the Markov kernel over a metric space in which the post-change kernel is unknown. Under the assumption that the pre- and post-change Markov kernel is geometrically ergodic, we derive an upper bound on the mean delay and a lower bound on the mean time between false alarms.
Offline RL With Resource Constrained Online Deployment
Regatti, Jayanth Reddy, Deshmukh, Aniket Anand, Cheng, Frank, Jung, Young Hun, Gupta, Abhishek, Dogan, Urun
Offline reinforcement learning is used to train policies in scenarios where real-time access to the environment is expensive or impossible. As a natural consequence of these harsh conditions, an agent may lack the resources to fully observe the online environment before taking an action. We dub this situation the resource-constrained setting. This leads to situations where the offline dataset (available for training) can contain fully processed features (using powerful language models, image models, complex sensors, etc.) which are not available when actions are actually taken online. This disconnect leads to an interesting and unexplored problem in offline RL: Is it possible to use a richly processed offline dataset to train a policy which has access to fewer features in the online environment? In this work, we introduce and formalize this novel resource-constrained problem setting. We highlight the performance gap between policies trained using the full offline dataset and policies trained using limited features. We address this performance gap with a policy transfer algorithm which first trains a teacher agent using the offline dataset where features are fully available, and then transfers this knowledge to a student agent that only uses the resource-constrained features. To better capture the challenge of this setting, we propose a data collection procedure: Resource Constrained-Datasets for RL (RC-D4RL). We evaluate our transfer algorithm on RC-D4RL and the popular D4RL benchmarks and observe consistent improvement over the baseline (TD3+BC without transfer). The code for the experiments is available at https://github.com/JayanthRR/RC-OfflineRL}{github.com/RC-OfflineRL.
Half a Dozen Real-World Applications of Evolutionary Multitasking and More
Gupta, Abhishek, Zhou, Lei, Ong, Yew-Soon, Chen, Zefeng, Hou, Yaqing
Until recently, the potential to transfer evolved skills across distinct optimization problem instances (or tasks) was seldom explored in evolutionary computation. The concept of evolutionary multitasking (EMT) fills this gap. It unlocks a population's implicit parallelism to jointly solve a set of tasks, hence creating avenues for skills transfer between them. Despite it being early days, the idea of EMT has begun to show promise in a range of real-world applications. In the backdrop of recent advances, the contribution of this paper is twofold. We first present a review of several application-oriented explorations of EMT in the literature, assimilating them into half a dozen broad categories according to their respective application areas. Within each category, the fundamental motivations for multitasking are discussed, together with an illustrative case study. Second, we present a set of recipes by which general problem formulations of practical interest, those that cut across different disciplines, could be transformed in the new light of EMT. We intend our discussions to not only underscore the practical utility of existing EMT methods, but also spark future research toward novel algorithms crafted for real-world deployment.
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Wong, Jian Cheng, Ooi, Chinchun, Gupta, Abhishek, Ong, Yew-Soon
A physics-informed neural network (PINN) uses physics-augmented loss functions, e.g., incorporating the residual term from governing differential equations, to ensure its output is consistent with fundamental physics laws. However, it turns out to be difficult to train an accurate PINN model for many problems in practice. In this paper, we address this issue through a novel perspective on the merits of learning in sinusoidal spaces with PINNs. By analyzing asymptotic behavior at model initialization, we first prove that a PINN of increasing size (i.e., width and depth) induces a bias towards flat outputs. Notably, a flat function is a trivial solution to many physics differential equations, hence, deceptively minimizing the residual term of the augmented loss while being far from the true solution. We then show that the sinusoidal mapping of inputs, in an architecture we label as sf-PINN, is able to elevate output variability, thus avoiding being trapped in the deceptive local minimum. In addition, the level of variability can be effectively modulated to match high-frequency patterns in the problem at hand. A key facet of this paper is the comprehensive empirical study that demonstrates the efficacy of learning in sinusoidal spaces with PINNs for a wide range of forward and inverse modelling problems spanning multiple physics domains.
The State of AI Ethics Report (Volume 5)
Gupta, Abhishek, Wright, Connor, Ganapini, Marianna Bergamaschi, Sweidan, Masa, Butalid, Renjie
This report from the Montreal AI Ethics Institute covers the most salient progress in research and reporting over the second quarter of 2021 in the field of AI ethics with a special emphasis on "Environment and AI", "Creativity and AI", and "Geopolitics and AI." The report also features an exclusive piece titled "Critical Race Quantum Computer" that applies ideas from quantum physics to explain the complexities of human characteristics and how they can and should shape our interactions with each other. The report also features special contributions on the subject of pedagogy in AI ethics, sociology and AI ethics, and organizational challenges to implementing AI ethics in practice. Given MAIEI's mission to highlight scholars from around the world working on AI ethics issues, the report also features two spotlights sharing the work of scholars operating in Singapore and Mexico helping to shape policy measures as they relate to the responsible use of technology. The report also has an extensive section covering the gamut of issues when it comes to the societal impacts of AI covering areas of bias, privacy, transparency, accountability, fairness, interpretability, disinformation, policymaking, law, regulations, and moral philosophy.
Persistent Reinforcement Learning via Subgoal Curricula
Sharma, Archit, Gupta, Abhishek, Levine, Sergey, Hausman, Karol, Finn, Chelsea
Reinforcement learning (RL) promises to enable autonomous acquisition of complex behaviors for diverse agents. However, the success of current reinforcement learning algorithms is predicated on an often under-emphasised requirement -- each trial needs to start from a fixed initial state distribution. Unfortunately, resetting the environment to its initial state after each trial requires substantial amount of human supervision and extensive instrumentation of the environment which defeats the purpose of autonomous reinforcement learning. In this work, we propose Value-accelerated Persistent Reinforcement Learning (VaPRL), which generates a curriculum of initial states such that the agent can bootstrap on the success of easier tasks to efficiently learn harder tasks. The agent also learns to reach the initial states proposed by the curriculum, minimizing the reliance on human interventions into the learning. We observe that VaPRL reduces the interventions required by three orders of magnitude compared to episodic RL while outperforming prior state-of-the art methods for reset-free RL both in terms of sample efficiency and asymptotic performance on a variety of simulated robotics problems.
Weighted Gaussian Process Bandits for Non-stationary Environments
Deng, Yuntian, Zhou, Xingyu, Kim, Baekjin, Tewari, Ambuj, Gupta, Abhishek, Shroff, Ness
In this paper, we consider the Gaussian process (GP) bandit optimization problem in a non-stationary environment. To capture external changes, the black-box function is allowed to be time-varying within a reproducing kernel Hilbert space (RKHS). To this end, we develop WGP-UCB, a novel UCB-type algorithm based on weighted Gaussian process regression. A key challenge is how to cope with infinite-dimensional feature maps. To that end, we leverage kernel approximation techniques to prove a sublinear regret bound, which is the first (frequentist) sublinear regret guarantee on weighted time-varying bandits with general nonlinear rewards. This result generalizes both non-stationary linear bandits and standard GP-UCB algorithms. Further, a novel concentration inequality is achieved for weighted Gaussian process regression with general weights. We also provide universal upper bounds and weight-dependent upper bounds for weighted maximum information gains. These results are potentially of independent interest for applications such as news ranking and adaptive pricing, where weights can be adopted to capture the importance or quality of data. Finally, we conduct experiments to highlight the favorable gains of the proposed algorithm in many cases when compared to existing methods.
Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
Rakelly, Kate, Gupta, Abhishek, Florensa, Carlos, Levine, Sergey
Mutual information maximization provides an appealing formalism for learning representations of data. In the context of reinforcement learning (RL), such representations can accelerate learning by discarding irrelevant and redundant information, while retaining the information necessary for control. Much of the prior work on these methods has addressed the practical difficulties of estimating mutual information from samples of high-dimensional observations, while comparatively less is understood about which mutual information objectives yield representations that are sufficient for RL from a theoretical perspective. In this paper, we formalize the sufficiency of a state representation for learning and representing the optimal policy, and study several popular mutual-information based objectives through this lens. Surprisingly, we find that two of these objectives can yield insufficient representations given mild and common assumptions on the structure of the MDP. We corroborate our theoretical results with empirical experiments on a simulated game environment with visual observations.