Guo, Hongcheng
LogLG: Weakly Supervised Log Anomaly Detection via Log-Event Graph Construction
Guo, Hongcheng, Guo, Yuhui, Chen, Renjie, Yang, Jian, Liu, Jiaheng, Li, Zhoujun, Zheng, Tieqiao, Hou, Weichao, Zheng, Liangfan, Zhang, Bo
Fully supervised log anomaly detection methods suffer the heavy burden of annotating massive unlabeled log data. Recently, many semi-supervised methods have been proposed to reduce annotation costs with the help of parsed templates. However, these methods consider each keyword independently, which disregards the correlation between keywords and the contextual relationships among log sequences. In this paper, we propose a novel weakly supervised log anomaly detection framework, named LogLG, to explore the semantic connections among keywords from sequences. Specifically, we design an end-to-end iterative process, where the keywords of unlabeled logs are first extracted to construct a log-event graph. Then, we build a subgraph annotator to generate pseudo labels for unlabeled log sequences. To ameliorate the annotation quality, we adopt a self-supervised task to pre-train a subgraph annotator. After that, a detection model is trained with the generated pseudo labels. Conditioned on the classification results, we re-extract the keywords from the log sequences and update the log-event graph for the next iteration. Experiments on five benchmarks validate the effectiveness of LogLG for detecting anomalies on unlabeled log data and demonstrate that LogLG, as the state-of-the-art weakly supervised method, achieves significant performance improvements compared to existing methods.
HanoiT: Enhancing Context-aware Translation via Selective Context
Yang, Jian, Yin, Yuwei, Ma, Shuming, Yang, Liqun, Guo, Hongcheng, Huang, Haoyang, Zhang, Dongdong, Zeng, Yutao, Li, Zhoujun, Wei, Furu
Context-aware neural machine translation aims to use the document-level context to improve translation quality. However, not all words in the context are helpful. The irrelevant or trivial words may bring some noise and distract the model from learning the relationship between the current sentence and the auxiliary context. To mitigate this problem, we propose a novel end-to-end encoder-decoder model with a layer-wise selection mechanism to sift and refine the long document context. To verify the effectiveness of our method, extensive experiments and extra quantitative analysis are conducted on four document-level machine translation benchmarks. The experimental results demonstrate that our model significantly outperforms previous models on all datasets via the soft selection mechanism.
LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine Translation
Guo, Hongcheng, Liu, Jiaheng, Huang, Haoyang, Yang, Jian, Li, Zhoujun, Zhang, Dongdong, Cui, Zheng, Wei, Furu
Multimodal Machine Translation (MMT) focuses on enhancing text-only translation with visual features, which has attracted considerable attention from both natural language processing and computer vision communities. Recent advances still struggle to train a separate model for each language pair, which is costly and unaffordable when the number of languages increases in the real world. In other words, the multilingual multimodal machine translation (Multilingual MMT) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for multiple languages. Besides, the image modality has no language boundaries, which is superior to bridging the semantic gap between languages. To this end, we first propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages. Then, an effective baseline LVP-M3 using visual prompts is proposed to support translations between different languages, which includes three stages (token encoding, language-aware visual prompt generation, and language translation). Extensive experimental results on our constructed benchmark datasets demonstrate the effectiveness of LVP-M3 method for Multilingual MMT.
TransLog: A Unified Transformer-based Framework for Log Anomaly Detection
Guo, Hongcheng, Lin, Xingyu, Yang, Jian, Zhuang, Yi, Bai, Jiaqi, Zhang, Bo, Zheng, Tieqiao, Li, Zhoujun
Log anomaly detection is a key component in the field of artificial intelligence for IT operations (AIOps). Considering log data of variant domains, retraining the whole network for unknown domains is inefficient in real industrial scenarios especially for low-resource domains. However, previous deep models merely focused on extracting the semantics of log sequence in the same domain, leading to poor generalization on multi-domain logs. Therefore, we propose a unified Transformer-based framework for log anomaly detection (\ourmethod{}), which is comprised of the pretraining and adapter-based tuning stage. Our model is first pretrained on the source domain to obtain shared semantic knowledge of log data. Then, we transfer the pretrained model to the target domain via the adapter-based tuning. The proposed method is evaluated on three public datasets including one source domain and two target domains. The experimental results demonstrate that our simple yet efficient approach, with fewer trainable parameters and lower training costs in the target domain, achieves state-of-the-art performance on three benchmarks.