Well File:

 Guang Cheng


Rates of Convergence for Large-scale Nearest Neighbor Classification

Neural Information Processing Systems

Nearest neighbor is a popular class of classification methods with many desirable properties. For a large data set which cannot be loaded into the memory of a single machine due to computation, communication, privacy, or ownership limitations, we consider the divide and conquer scheme: the entire data set is divided into small subsamples, on which nearest neighbor predictions are made, and then a final decision is reached by aggregating the predictions on subsamples by majority voting. We name this method the big Nearest Neighbor (bigNN) classifier, and provide its rates of convergence under minimal assumptions, in terms of both the excess risk and the classification instability, which are proven to be the same rates as the oracle nearest neighbor classifier and cannot be improved. To significantly reduce the prediction time that is required for achieving the optimal rate, we also consider the pre-training acceleration technique applied to the bigNN method, with proven convergence rate. We find that in the distributed setting, the optimal choice of the neighbor k should scale with both the total sample size and the number of partitions, and there is a theoretical upper limit for the latter. Numerical studies have verified the theoretical findings.



Rates of Convergence for Large-scale Nearest Neighbor Classification

Neural Information Processing Systems

Nearest neighbor is a popular class of classification methods with many desirable properties. For a large data set which cannot be loaded into the memory of a single machine due to computation, communication, privacy, or ownership limitations, we consider the divide and conquer scheme: the entire data set is divided into small subsamples, on which nearest neighbor predictions are made, and then a final decision is reached by aggregating the predictions on subsamples by majority voting. We name this method the big Nearest Neighbor (bigNN) classifier, and provide its rates of convergence under minimal assumptions, in terms of both the excess risk and the classification instability, which are proven to be the same rates as the oracle nearest neighbor classifier and cannot be improved. To significantly reduce the prediction time that is required for achieving the optimal rate, we also consider the pre-training acceleration technique applied to the bigNN method, with proven convergence rate. We find that in the distributed setting, the optimal choice of the neighbor k should scale with both the total sample size and the number of partitions, and there is a theoretical upper limit for the latter. Numerical studies have verified the theoretical findings.


Early Stopping for Nonparametric Testing

Neural Information Processing Systems

Early stopping of iterative algorithms is an algorithmic regularization method to avoid over-fitting in estimation and classification. In this paper, we show that early stopping can also be applied to obtain the minimax optimal testing in a general non-parametric setup. Specifically, a Wald-type test statistic is obtained based on an iterated estimate produced by functional gradient descent algorithms in a reproducing kernel Hilbert space. A notable contribution is to establish a "sharp" stopping rule: when the number of iterations achieves an optimal order, testing optimality is achievable; otherwise, testing optimality becomes impossible. As a by-product, a similar sharpness result is also derived for minimax optimal estimation under early stopping. All obtained results hold for various kernel classes, including Sobolev smoothness classes and Gaussian kernel classes.