Not enough data to create a plot.
Try a different view from the menu above.
Grove, Adam J.
Updating Sets of Probabilities
Grove, Adam J., Halpern, Joseph Y.
There are several well-known justifications for conditioning as the appropriate method for updating a single probability measure, given an observation. However, there is a significant body of work arguing for sets of probability measures, rather than single measures, as a more realistic model of uncertainty. Conditioning still makes sense in this context--we can simply condition each measure in the set individually, then combine the results--and, indeed, it seems to be the preferred updating procedure in the literature. But how justified is conditioning in this richer setting? Here we show, by considering an axiomatic account of conditioning given by van Fraassen, that the single-measure and sets-of-measures cases are very different. We show that van Fraassen's axiomatization for the former case is nowhere near sufficient for updating sets of measures. We give a considerably longer (and not as compelling) list of axioms that together force conditioning in this setting, and describe other update methods that are allowed once any of these axioms is dropped.
Probability Estimation in Face of Irrelevant Information
Grove, Adam J., Koller, Daphne
In this paper, we consider one aspect of the problem of applying decision theory to the design of agents that learn how to make decisions under uncertainty. This aspect concerns how an agent can estimate probabilities for the possible states of the world, given that it only makes limited observations before committing to a decision. We show that the naive application of statistical tools can be improved upon if the agent can determine which of his observations are truly relevant to the estimation problem at hand. We give a framework in which such determinations can be made, and define an estimation procedure to use them. Our framework also suggests several extensions, which show how additional knowledge can be used to improve tile estimation procedure still further.
Probability Update: Conditioning vs. Cross-Entropy
Grove, Adam J., Halpern, Joseph Y.
Conditioning is the generally agreed-upon method for updating probability distributions when one learns that an event is certainly true. But it has been argued that we need other rules, in particular the rule of cross-entropy minimization, to handle updates that involve uncertain information. In this paper we re-examine such a case: van Fraassen's Judy Benjamin problem, which in essence asks how one might update given the value of a conditional probability. We argue that -- contrary to the suggestions in the literature -- it is possible to use simple conditionalization in this case, and thereby obtain answers that agree fully with intuition. This contrasts with proposals such as cross-entropy, which are easier to apply but can give unsatisfactory answers. Based on the lessons from this example, we speculate on some general philosophical issues concerning probability update.
Linear Concepts and Hidden Variables: An Empirical Study
Grove, Adam J., Roth, Dan
Some learning techniques for classification tasks work indirectly, by first trying to fit a full probabilistic model to the observed data. Whether this is a good idea or not depends on the robustness with respect to deviations from the postulated model. We study this question experimentally in a restricted, yet nontrivial and interesting case: we consider a conditionally independent attribute (CIA) model which postulates a single binary-valued hidden variable z on which all other attributes (i.e., the target and the observables) depend. In this model, finding the most likely value of anyone variable (given known values for the others) reduces to testing a linear function of the observed values. We learn CIA with two techniques: the standard EM algorithm, and a new algorithm we develop based on covariances. We compare these, in a controlled fashion, against an algorithm (a version of Winnow) that attempts to find a good linear classifier directly. Our conclusions help delimit the fragility of using the CIA model for classification: once the data departs from this model, performance quickly degrades and drops below that of the directly-learned linear classifier.
Linear Concepts and Hidden Variables: An Empirical Study
Grove, Adam J., Roth, Dan
Some learning techniques for classification tasks work indirectly, by first trying to fit a full probabilistic model to the observed data. Whether this is a good idea or not depends on the robustness with respect to deviations from the postulated model. We study this question experimentally in a restricted, yet nontrivial and interesting case: we consider a conditionally independent attribute (CIA) model which postulates a single binary-valued hidden variable z on which all other attributes (i.e., the target and the observables) depend. In this model, finding the most likely value of anyone variable (given known values for the others) reduces to testing a linear function of the observed values. We learn CIA with two techniques: the standard EM algorithm, and a new algorithm we develop based on covariances. We compare these, in a controlled fashion, against an algorithm (a version of Winnow) that attempts to find a good linear classifier directly. Our conclusions help delimit the fragility of using the CIA model for classification: once the data departs from this model, performance quickly degrades and drops below that of the directly-learned linear classifier.