Not enough data to create a plot.
Try a different view from the menu above.
Goswami, Mayank
A Theoretical Study of Neural Network Expressive Power via Manifold Topology
Yao, Jiachen, Goswami, Mayank, Chen, Chao
A prevalent assumption regarding real-world data is that it lies on or close to a low-dimensional manifold. When deploying a neural network on data manifolds, the required size, i.e., the number of neurons of the network, heavily depends on the intricacy of the underlying latent manifold. While significant advancements have been made in understanding the geometric attributes of manifolds, it's essential to recognize that topology, too, is a fundamental characteristic of manifolds. In this study, we investigate network expressive power in terms of the latent data manifold. Integrating both topological and geometric facets of the data manifold, we present a size upper bound of ReLU neural networks.
Learning to Segment from Noisy Annotations: A Spatial Correction Approach
Yao, Jiachen, Zhang, Yikai, Zheng, Songzhu, Goswami, Mayank, Prasanna, Prateek, Chen, Chao
Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly assume noisy labels in different pixels are \textit{i.i.d}. However, segmentation label noise usually has strong spatial correlation and has prominent bias in distribution. In this paper, we propose a novel Markov model for segmentation noisy annotations that encodes both spatial correlation and bias. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations.
AI pipeline for accurate retinal layer segmentation using OCT 3D images
Goswami, Mayank
Image data set from a multi-spectral animal imaging system is used to address two issues: (a) registering the oscillation in optical coherence tomography (OCT) images due to mouse eye movement and (b) suppressing the shadow region under the thick vessels/structures. Several classical and AI-based algorithms in combination are tested for each task to see their compatibility with data from the combined animal imaging system. Hybridization of AI with optical flow followed by Homography transformation is shown to be working (correlation value>0.7) for registration. Resnet50 backbone is shown to be working better than the famous U-net model for shadow region detection with a loss value of 0.9. A simple-to-implement analytical equation is shown to be working for brightness manipulation with a 1% increment in mean pixel values and a 77% decrease in the number of zeros. The proposed equation allows formulating a constraint optimization problem using a controlling factor {\alpha} for minimization of number of zeros, standard deviation of pixel value and maximizing the mean pixel value. For Layer segmentation, the standard U-net model is used. The AI-Pipeline consists of CNN, Optical flow, RCNN, pixel manipulation model, and U-net models in sequence. The thickness estimation process has a 6% error as compared to manual annotated standard data.
Learning with Feature-Dependent Label Noise: A Progressive Approach
Zhang, Yikai, Zheng, Songzhu, Wu, Pengxiang, Goswami, Mayank, Chen, Chao
Label noise is frequently observed in real-world large-scale datasets. The noise is introduced due to a variety of reasons; it is heterogeneous and feature-dependent. Most existing approaches to handling noisy labels fall into two categories: they either assume an ideal feature-independent noise, or remain heuristic without theoretical guarantees. In this paper, we propose to target a new family of featuredependent label noise, which is much more general than commonly used i.i.d. Focusing on this general noise family, we propose a progressive label correction algorithm that iteratively corrects labels and refines the model. We provide theoretical guarantees showing that for a wide variety of (unknown) noise patterns, a classifier trained with this strategy converges to be consistent with the Bayes classifier. In experiments, our method outperforms SOTA baselines and is robust to various noise types and levels. Addressing noise in training set labels is an important problem in supervised learning. Incorrect annotation of data is inevitable in large-scale data collection, due to intrinsic ambiguity of data/class and mistakes of human/automatic annotators (Yan et al., 2014; Andreas et al., 2017). Developing methods that are resilient to label noise is therefore crucial in real-life applications.
Stability of SGD: Tightness Analysis and Improved Bounds
Zhang, Yikai, Zhang, Wenjia, Bald, Sammy, Pingali, Vamsi, Chen, Chao, Goswami, Mayank
Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale machine learning models that also generalize well in practice. Several explanations have been offered for this generalization performance, a prominent one being algorithmic stability [18]. However, there are no known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore, apart from the properties of the loss function, data distribution has also been shown to be an important factor in generalization performance. This raises the question: is the stability analysis of [18] tight for smooth functions, and if not, for what kind of loss functions and data distributions can the stability analysis be improved? In this paper we first settle open questions regarding tightness of bounds in the data-independent setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss functions is tight, but it can be improved for non-convex loss functions. Next, we give a novel and improved data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss functions, with negligible regularization parameters, and improve existing data-dependent bounds in the non-convex setting. We hope that our results will initiate further efforts to better understand the data-dependent setting under non-convex loss functions, leading to an improved understanding of the generalization abilities of deep networks.