Goto

Collaborating Authors

 Gogate, Vibhav


Approximation by Quantization

arXiv.org Artificial Intelligence

Inference in graphical models consists of repeatedly multiplying and summing out potentials. It is generally intractable because the derived potentials obtained in this way can be exponentially large. Approximate inference techniques such as belief propagation and variational methods combat this by simplifying the derived potentials, typically by dropping variables from them. We propose an alternate method for simplifying potentials: quantizing their values. Quantization causes different states of a potential to have the same value, and therefore introduces context-specific independencies that can be exploited to represent the potential more compactly. We use algebraic decision diagrams (ADDs) to do this efficiently. We apply quantization and ADD reduction to variable elimination and junction tree propagation, yielding a family of bounded approximate inference schemes. Our experimental tests show that our new schemes significantly outperform state-of-the-art approaches on many benchmark instances.


Probabilistic Theorem Proving

arXiv.org Artificial Intelligence

Many representation schemes combining first-order logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logical structure into account. We propose the first method that has the full power of both graphical model inference and first-order theorem proving (in finite domains with Herbrand interpretations). We first define probabilistic theorem proving, their generalization, as the problem of computing the probability of a logical formula given the probabilities or weights of a set of formulas. We then show how this can be reduced to the problem of lifted weighted model counting, and develop an efficient algorithm for the latter. We prove the correctness of this algorithm, investigate its properties, and show how it generalizes previous approaches. Experiments show that it greatly outperforms lifted variable elimination when logical structure is present. Finally, we propose an algorithm for approximate probabilistic theorem proving, and show that it can greatly outperform lifted belief propagation.


Learning Efficient Markov Networks

Neural Information Processing Systems

We present an algorithm for learning high-treewidth Markov networks where inference is still tractable. This is made possible by exploiting context specific independence and determinism in the domain. The class of models our algorithm can learn has the same desirable properties as thin junction trees: polynomial inference, closed form weight learning, etc., but is much broader. Our algorithm searches for a feature that divides the state space into subspaces where the remaining variables decompose into independent subsets (conditioned on the feature or its negation) and recurses on each subspace/subset of variables until no useful new features can be found. We provide probabilistic performance guarantees for our algorithm under the assumption that the maximum feature length is k (the treewidth can be much larger) and dependences are of bounded strength. We also propose a greedy version of the algorithm that, while forgoing these guarantees, is much more efficient.Experiments on a variety of domains show that our approach compares favorably with thin junction trees and other Markov network structure learners.


Lifted Inference Seen from the Other Side : The Tractable Features

Neural Information Processing Systems

Lifted inference algorithms for representations that combine first-order logic and probabilistic graphical models have been the focus of much recent research. All lifted algorithms developed to date are based on the same underlying idea: take a standard probabilistic inference algorithm (e.g., variable elimination, belief propagation etc.) and improve its efficiency by exploiting repeated structure in the first-order model. In this paper, we propose an approach from the other side in that we use techniques from logic for probabilistic inference. In particular, we define a set of rules that look only at the logical representation to identify models for which exact efficient inference is possible. We show that our rules yield several new tractable classes that cannot be solved efficiently by any of the existing techniques.