Not enough data to create a plot.
Try a different view from the menu above.
Godbole, Aditi
Synthetic Data for Robust AI Model Development in Regulated Enterprises
Godbole, Aditi
In today's business landscape, organizations need to find the right balance between using their customers' data ethically to power AI solutions and being compliant regarding data privacy and data usage regulations. In this paper, we discuss synthetic data as a possible solution to this dilemma. Synthetic data is simulated data that mimics the real data. We explore how organizations in heavily regulated industries, such as financial institutions or healthcare organizations, can leverage synthetic data to build robust AI solutions while staying compliant. We demonstrate that synthetic data offers two significant advantages by allowing AI models to learn from more diverse data and by helping organizations stay compliant against data privacy laws with the use of synthetic data instead of customer information. We discuss case studies to show how synthetic data can be effectively used in the finance and healthcare sector while discussing the challenges of using synthetic data and some ethical questions it raises. Our research finds that synthetic data could be a game-changer for AI in regulated industries. The potential can be realized when industry, academia, and regulators collaborate to build solutions. We aim to initiate discussions on the use of synthetic data to build ethical, responsible, and effective AI systems in regulated enterprise industries.
Leveraging Long-Context Large Language Models for Multi-Document Understanding and Summarization in Enterprise Applications
Godbole, Aditi, George, Jabin Geevarghese, Shandilya, Smita
The rapid increase in unstructured data across various fields has made multi-document comprehension and summarization a critical task. Traditional approaches often fail to capture relevant context, maintain logical consistency, and extract essential information from lengthy documents. This paper explores the use of Long-context Large Language Models (LLMs) for multi-document summarization, demonstrating their exceptional capacity to grasp extensive connections, provide cohesive summaries, and adapt to various industry domains and integration with enterprise applications/systems. The paper discusses the workflow of multi-document summarization for effectively deploying long-context LLMs, supported by case studies in legal applications, enterprise functions such as HR, finance, and sourcing, as well as in the medical and news domains. These case studies show notable enhancements in both efficiency and accuracy. Technical obstacles, such as dataset diversity, model scalability, and ethical considerations like bias mitigation and factual accuracy, are carefully analyzed. Prospective research avenues are suggested to augment the functionalities and applications of long-context LLMs, establishing them as pivotal tools for transforming information processing across diverse sectors and enterprise applications.