Plotting

 Gleb Gusev




CatBoost: unbiased boosting with categorical features

Neural Information Processing Systems

This paper presents the key algorithmic techniques behind CatBoost, a new gradient boosting toolkit. Their combination leads to CatBoost outperforming other publicly available boosting implementations in terms of quality on a variety of datasets. Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all currently existing implementations of gradient boosting algorithms. In this paper, we provide a detailed analysis of this problem and demonstrate that proposed algorithms solve it effectively, leading to excellent empirical results.


Minimal Variance Sampling in Stochastic Gradient Boosting

Neural Information Processing Systems

Stochastic Gradient Boosting (SGB) is a widely used approach to regularization of boosting models based on decision trees. It was shown that, in many cases, random sampling at each iteration can lead to better generalization performance of the model and can also decrease the learning time. Different sampling approaches were proposed, where probabilities are not uniform, and it is not currently clear which approach is the most effective. In this paper, we formulate the problem of randomization in SGB in terms of optimization of sampling probabilities to maximize the estimation accuracy of split scoring used to train decision trees. This optimization problem has a closed-form nearly optimal solution, and it leads to a new sampling technique, which we call Minimal Variance Sampling (MVS). The method both decreases the number of examples needed for each iteration of boosting and increases the quality of the model significantly as compared to the state-of-the art sampling methods. The superiority of the algorithm was confirmed by introducing MVS as a new default option for subsampling in CatBoost, a gradient boosting library achieving state-of-the-art quality on various machine learning tasks.


Efficient High-Order Interaction-Aware Feature Selection Based on Conditional Mutual Information

Neural Information Processing Systems

This study introduces a novel feature selection approach CMICOT, which is a further evolution of filter methods with sequential forward selection (SFS) whose scoring functions are based on conditional mutual information (MI). We state and study a novel saddle point (max-min) optimization problem to build a scoring function that is able to identify joint interactions between several features. This method fills the gap of MI-based SFS techniques with high-order dependencies. In this high-dimensional case, the estimation of MI has prohibitively high sample complexity. We mitigate this cost using a greedy approximation and binary representatives what makes our technique able to be effectively used. The superiority of our approach is demonstrated by comparison with recently proposed interactionaware filters and several interaction-agnostic state-of-the-art ones on ten publicly available benchmark datasets.


Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods

Neural Information Processing Systems

In this paper, we consider a non-convex loss-minimization problem of learning Supervised PageRank models, which can account for features of nodes and edges. We propose gradient-based and random gradient-free methods to solve this problem. Our algorithms are based on the concept of an inexact oracle and unlike the state-ofthe-art gradient-based method we manage to provide theoretically the convergence rate guarantees for both of them. Finally, we compare the performance of the proposed optimization methods with the state of the art applied to a ranking task.