Ghosh, Subhankar
Reducing Uncertainty in Sea-level Rise Prediction: A Spatial-variability-aware Approach
Ghosh, Subhankar, An, Shuai, Sharma, Arun, Gupta, Jayant, Shekhar, Shashi, Subramanian, Aneesh
Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or deep learning to combine different climate projections. Such approaches are inadequate when different regions require different weighting schemes for accurate and reliable sea-level rise predictions. This paper proposes a zonal regression model which addresses spatial variability and model inter-dependency. Experimental results show more reliable predictions using the weights learned via this approach on a regional scale.
SALM: Speech-augmented Language Model with In-context Learning for Speech Recognition and Translation
Chen, Zhehuai, Huang, He, Andrusenko, Andrei, Hrinchuk, Oleksii, Puvvada, Krishna C., Li, Jason, Ghosh, Subhankar, Balam, Jagadeesh, Ginsburg, Boris
We present a novel Speech Augmented Language Model (SALM) with {\em multitask} and {\em in-context} learning capabilities. SALM comprises a frozen text LLM, a audio encoder, a modality adapter module, and LoRA layers to accommodate speech input and associated task instructions. The unified SALM not only achieves performance on par with task-specific Conformer baselines for Automatic Speech Recognition (ASR) and Speech Translation (AST), but also exhibits zero-shot in-context learning capabilities, demonstrated through keyword-boosting task for ASR and AST. Moreover, {\em speech supervised in-context training} is proposed to bridge the gap between LLM training and downstream speech tasks, which further boosts the in-context learning ability of speech-to-text models. Proposed model is open-sourced via NeMo toolkit.
Probabilistically robust conformal prediction
Ghosh, Subhankar, Shi, Yuanjie, Belkhouja, Taha, Yan, Yan, Doppa, Jana, Jones, Brian
Conformal prediction (CP) is a framework to quantify uncertainty of machine learning classifiers including deep neural networks. Given a testing example and a trained classifier, CP produces a prediction set of candidate labels with a user-specified coverage (i.e., true class label is contained with high probability). Almost all the existing work on CP assumes clean testing data and there is not much known about the robustness of CP algorithms w.r.t natural/adversarial perturbations to testing examples. This paper studies the problem of probabilistically robust conformal prediction (PRCP) which ensures robustness to most perturbations around clean input examples. PRCP generalizes the standard CP (cannot handle perturbations) and adversarially robust CP (ensures robustness w.r.t worst-case perturbations) to achieve better trade-offs between nominal performance and robustness. We propose a novel adaptive PRCP (aPRCP) algorithm to achieve probabilistically robust coverage. The key idea behind aPRCP is to determine two parallel thresholds, one for data samples and another one for the perturbations on data (aka "quantile-of-quantile" design). We provide theoretical analysis to show that aPRCP algorithm achieves robust coverage. Our experiments on CIFAR-10, CIFAR-100, and ImageNet datasets using deep neural networks demonstrate that aPRCP achieves better trade-offs than state-of-the-art CP and adversarially robust CP algorithms.
Improving Uncertainty Quantification of Deep Classifiers via Neighborhood Conformal Prediction: Novel Algorithm and Theoretical Analysis
Ghosh, Subhankar, Belkhouja, Taha, Yan, Yan, Doppa, Janardhan Rao
Safe deployment of deep neural networks in high-stake real-world applications requires theoretically sound uncertainty quantification. Conformal prediction (CP) is a principled framework for uncertainty quantification of deep models in the form of prediction set for classification tasks with a user-specified coverage (i.e., true class label is contained with high probability). This paper proposes a novel algorithm referred to as Neighborhood Conformal Prediction (NCP) to improve the efficiency of uncertainty quantification from CP for deep classifiers (i.e., reduce prediction set size). The key idea behind NCP is to use the learned representation of the neural network to identify k nearest-neighbors calibration examples for a given testing input and assign them importance weights proportional to their distance to create adaptive prediction sets. We theoretically show that if the learned data representation of the neural network satisfies some mild conditions, NCP will produce smaller prediction sets than traditional CP algorithms. Our comprehensive experiments on CIFAR-10, CIFAR-100, and ImageNet datasets using diverse deep neural networks strongly demonstrate that NCP leads to significant reduction in prediction set size over prior CP methods.
VANI: Very-lightweight Accent-controllable TTS for Native and Non-native speakers with Identity Preservation
Badlani, Rohan, Arora, Akshit, Ghosh, Subhankar, Valle, Rafael, Shih, Kevin J., Santos, João Felipe, Ginsburg, Boris, Catanzaro, Bryan
We introduce VANI, a very lightweight multi-lingual accent controllable speech synthesis system. Our model builds upon disentanglement strategies proposed in RADMMM and supports explicit control of accent, language, speaker and fine-grained $F_0$ and energy features for speech synthesis. We utilize the Indic languages dataset, released for LIMMITS 2023 as part of ICASSP Signal Processing Grand Challenge, to synthesize speech in 3 different languages. Our model supports transferring the language of a speaker while retaining their voice and the native accent of the target language. We utilize the large-parameter RADMMM model for Track $1$ and lightweight VANI model for Track $2$ and $3$ of the competition.