Goto

Collaborating Authors

 Geist, Matthieu


Difference of Convex Functions Programming Applied to Control with Expert Data

arXiv.org Machine Learning

This paper reports applications of Difference of Convex functions (DC) programming to Learning from Demonstrations (LfD) and Reinforcement Learning (RL) with expert data. This is made possible because the norm of the Optimal Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms, is DC. Improvement in performance is demonstrated on two specific algorithms, namely Reward-regularized Classification for Apprenticeship Learning (RCAL) and Reinforcement Learning with Expert Demonstrations (RLED), through experiments on generic Markov Decision Processes (MDP), called Garnets.


Difference of Convex Functions Programming for Reinforcement Learning

Neural Information Processing Systems

Large Markov Decision Processes (MDPs) are usually solved using Approximate Dynamic Programming (ADP) methods such as Approximate Value Iteration (AVI) or Approximate Policy Iteration (API). The main contribution of this paper is to show that, alternatively, the optimal state-action value function can be estimated using Difference of Convex functions (DC) Programming. To do so, we study the minimization of a norm of the Optimal Bellman Residual (OBR) $T^*Q-Q$, where $T^*$ is the so-called optimal Bellman operator. Controlling this residual allows controlling the distance to the optimal action-value function, and we show that minimizing an empirical norm of the OBR is consistant in the Vapnik sense. Finally, we frame this optimization problem as a DC program. That allows envisioning using the large related literature on DC Programming to address the Reinforcement Leaning (RL) problem.


Inverse Reinforcement Learning through Structured Classification

Neural Information Processing Systems

This paper adresses the inverse reinforcement learning (IRL) problem, that is inferring a reward for which a demonstrated expert behavior is optimal. We introduce a new algorithm, SCIRL, whose principle is to use the so-called feature expectation of the expert as the parameterization of the score function of a multi-class classifier. This approach produces a reward function for which the expert policy is provably near-optimal. Contrary to most of existing IRL algorithms, SCIRL does not require solving the direct RL problem. Moreover, with an appropriate heuristic, it can succeed with only trajectories sampled according to the expert behavior. This is illustrated on a car driving simulator.


A Dantzig Selector Approach to Temporal Difference Learning

arXiv.org Machine Learning

LSTD is a popular algorithm for value function approximation. Whenever the number of features is larger than the number of samples, it must be paired with some form of regularization. In particular, L1-regularization methods tend to perform feature selection by promoting sparsity, and thus, are well-suited for high-dimensional problems. However, since LSTD is not a simple regression algorithm, but it solves a fixed--point problem, its integration with L1-regularization is not straightforward and might come with some drawbacks (e.g., the P-matrix assumption for LASSO-TD). In this paper, we introduce a novel algorithm obtained by integrating LSTD with the Dantzig Selector. We investigate the performance of the proposed algorithm and its relationship with the existing regularized approaches, and show how it addresses some of their drawbacks.