Not enough data to create a plot.
Try a different view from the menu above.
Garodia, Rishabh
Towards Generating Informative Textual Description for Neurons in Language Models
Mondal, Shrayani, Garodia, Rishabh, Qureshi, Arbaaz, Lee, Taesung, Park, Youngja
Recent developments in transformer-based language models have allowed them to capture a wide variety of world knowledge that can be adapted to downstream tasks with limited resources. However, what pieces of information are understood in these models is unclear, and neuron-level contributions in identifying them are largely unknown. Conventional approaches in neuron explainability either depend on a finite set of pre-defined descriptors or require manual annotations for training a secondary model that can then explain the neurons of the primary model. In this paper, we take BERT as an example and we try to remove these constraints and propose a novel and scalable framework that ties textual descriptions to neurons. We leverage the potential of generative language models to discover human-interpretable descriptors present in a dataset and use an unsupervised approach to explain neurons with these descriptors. Through various qualitative and quantitative analyses, we demonstrate the effectiveness of this framework in generating useful data-specific descriptors with little human involvement in identifying the neurons that encode these descriptors. In particular, our experiment shows that the proposed approach achieves 75% precision@2, and 50% recall@2
Vision Meets Definitions: Unsupervised Visual Word Sense Disambiguation Incorporating Gloss Information
Kwon, Sunjae, Garodia, Rishabh, Lee, Minhwa, Yang, Zhichao, Yu, Hong
Visual Word Sense Disambiguation (VWSD) is a task to find the image that most accurately depicts the correct sense of the target word for the given context. Previously, image-text matching models often suffered from recognizing polysemous words. This paper introduces an unsupervised VWSD approach that uses gloss information of an external lexical knowledge-base, especially the sense definitions. Specifically, we suggest employing Bayesian inference to incorporate the sense definitions when sense information of the answer is not provided. In addition, to ameliorate the out-of-dictionary (OOD) issue, we propose a context-aware definition generation with GPT-3. Experimental results show that the VWSD performance significantly increased with our Bayesian inference-based approach. In addition, our context-aware definition generation achieved prominent performance improvement in OOD examples exhibiting better performance than the existing definition generation method.