Garg, Sourav
Locking On: Leveraging Dynamic Vehicle-Imposed Motion Constraints to Improve Visual Localization
Hausler, Stephen, Garg, Sourav, Chakravarty, Punarjay, Shrivastava, Shubham, Vora, Ankit, Milford, Michael
Most 6-DoF localization and SLAM systems use static landmarks but ignore dynamic objects because they cannot be usefully incorporated into a typical pipeline. Where dynamic objects have been incorporated, typical approaches have attempted relatively sophisticated identification and localization of these objects, limiting their robustness or general utility. In this research, we propose a middle ground, demonstrated in the context of autonomous vehicles, using dynamic vehicles to provide limited pose constraint information in a 6-DoF frame-by-frame PnP-RANSAC localization pipeline. We refine initial pose estimates with a motion model and propose a method for calculating the predicted quality of future pose estimates, triggered based on whether or not the autonomous vehicle's motion is constrained by the relative frame-to-frame location of dynamic vehicles in the environment. Our approach detects and identifies suitable dynamic vehicles to define these pose constraints to modify a pose filter, resulting in improved recall across a range of localization tolerances from $0.25m$ to $5m$, compared to a state-of-the-art baseline single image PnP method and its vanilla pose filtering. Our constraint detection system is active for approximately $35\%$ of the time on the Ford AV dataset and localization is particularly improved when the constraint detection is active.
Deep Declarative Dynamic Time Warping for End-to-End Learning of Alignment Paths
Xu, Ming, Garg, Sourav, Milford, Michael, Gould, Stephen
This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW). Existing approaches to differentiable DTW either differentiate through a fixed warping path or apply a differentiable relaxation to the min operator found in the recursive steps used to solve the DTW problem. We instead propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW. By formulating DTW as a continuous, inequality constrained optimisation problem, we can compute gradients for the solution of the optimal alignment (with respect to the underlying time series) using implicit differentiation. An interesting byproduct of this formulation is that DecDTW outputs the optimal warping path between two time series as opposed to a soft approximation, recoverable from Soft-DTW. We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself. This naturally occurs, for instance, when learning to improve the accuracy of predicted alignments against ground truth alignments. We evaluate DecDTW on two such applications, namely the audio-to-score alignment task in music information retrieval and the visual place recognition task in robotics, demonstrating state-of-the-art results in both.
SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition
Garg, Sourav, Milford, Michael
Place Recognition is a crucial capability for mobile robot localization and navigation. Image-based or Visual Place Recognition (VPR) is a challenging problem as scene appearance and camera viewpoint can change significantly when places are revisited. Recent VPR methods based on ``sequential representations'' have shown promising results as compared to traditional sequence score aggregation or single image based techniques. In parallel to these endeavors, 3D point clouds based place recognition is also being explored following the advances in deep learning based point cloud processing. However, a key question remains: is an explicit 3D structure based place representation always superior to an implicit ``spatial'' representation based on sequence of RGB images which can inherently learn scene structure. In this extended abstract, we attempt to compare these two types of methods by considering a similar ``metric span'' to represent places. We compare a 3D point cloud based method (PointNetVLAD) with image sequence based methods (SeqNet and others) and showcase that image sequence based techniques approach, and can even surpass, the performance achieved by point cloud based methods for a given metric span. These performance variations can be attributed to differences in data richness of input sensors as well as data accumulation strategies for a mobile robot. While a perfect apple-to-apple comparison may not be feasible for these two different modalities, the presented comparison takes a step in the direction of answering deeper questions regarding spatial representations, relevant to several applications like Autonomous Driving and Augmented/Virtual Reality. Source code available publicly https://github.com/oravus/seqNet.
Where is your place, Visual Place Recognition?
Garg, Sourav, Fischer, Tobias, Milford, Michael
Visual Place Recognition (VPR) is often characterized as being able to recognize the same place despite significant changes in appearance and viewpoint. VPR is a key component of Spatial Artificial Intelligence, enabling robotic platforms and intelligent augmentation platforms such as augmented reality devices to perceive and understand the physical world. In this paper, we observe that there are three "drivers" that impose requirements on spatially intelligent agents and thus VPR systems: 1) the particular agent including its sensors and computational resources, 2) the operating environment of this agent, and 3) the specific task that the artificial agent carries out. In this paper, we characterize and survey key works in the VPR area considering those drivers, including their place representation and place matching choices. We also provide a new definition of VPR based on the visual overlap -- akin to spatial view cells in the brain -- that enables us to find similarities and differences to other research areas in the robotics and computer vision fields. We identify numerous open challenges and suggest areas that require more in-depth attention in future works.
SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition
Garg, Sourav, Milford, Michael
Visual Place Recognition (VPR) is the task of matching current visual imagery from a camera to images stored in a reference map of the environment. While initial VPR systems used simple direct image methods or hand-crafted visual features, recent work has focused on learning more powerful visual features and further improving performance through either some form of sequential matcher / filter or a hierarchical matching process. In both cases the performance of the initial single-image based system is still far from perfect, putting significant pressure on the sequence matching or (in the case of hierarchical systems) pose refinement stages. In this paper we present a novel hybrid system that creates a high performance initial match hypothesis generator using short learnt sequential descriptors, which enable selective control sequential score aggregation using single image learnt descriptors. Sequential descriptors are generated using a temporal convolutional network dubbed SeqNet, encoding short image sequences using 1-D convolutions, which are then matched against the corresponding temporal descriptors from the reference dataset to provide an ordered list of place match hypotheses. We then perform selective sequential score aggregation using shortlisted single image learnt descriptors from a separate pipeline to produce an overall place match hypothesis. Comprehensive experiments on challenging benchmark datasets demonstrate the proposed method outperforming recent state-of-the-art methods using the same amount of sequential information. Source code and supplementary material can be found at https://github.com/oravus/seqNet.