Not enough data to create a plot.
Try a different view from the menu above.
Garcin, Samuel
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Garcin, Samuel, McInroe, Trevor, Castro, Pablo Samuel, Panangaden, Prakash, Lucas, Christopher G., Abel, David, Albrecht, Stefano V.
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
PixelBrax: Learning Continuous Control from Pixels End-to-End on the GPU
McInroe, Trevor, Garcin, Samuel
We combine the Brax physics engine with a pure JAX renderer, allowing reinforcement learning (RL) experiments to run end-to-end on the GPU. PixelBrax can render observations over thousands of parallel environments and can run two orders of magnitude faster than existing benchmarks that rely on CPU-based rendering. Additionally, PixelBrax supports fully reproducible experiments through its explicit handling of any stochasticity within the environments and supports color and video distractors for benchmarking generalization.
ICED: Zero-Shot Transfer in Reinforcement Learning via In-Context Environment Design
Garcin, Samuel, Doran, James, Guo, Shangmin, Lucas, Christopher G., Albrecht, Stefano V.
Autonomous agents trained using deep reinforcement learning (RL) often lack the ability to successfully generalise to new environments, even when they share characteristics with the environments they have encountered during training. In this work, we investigate how the sampling of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents. We discover that, for deep actor-critic architectures sharing their base layers, prioritising levels according to their value loss minimises the mutual information between the agent's internal representation and the set of training levels in the generated training data. This provides a novel theoretical justification for the implicit regularisation achieved by certain adaptive sampling strategies. We then turn our attention to unsupervised environment design (UED) methods, which have more control over the data generation mechanism. We find that existing UED methods can significantly shift the training distribution, which translates to low ZSG performance. To prevent both overfitting and distributional shift, we introduce in-context environment design (ICED). ICED generates levels using a variational autoencoder trained over an initial set of level parameters, reducing distributional shift, and achieves significant improvements in ZSG over adaptive level sampling strategies and UED methods.
How the level sampling process impacts zero-shot generalisation in deep reinforcement learning
Garcin, Samuel, Doran, James, Guo, Shangmin, Lucas, Christopher G., Albrecht, Stefano V.
A key limitation preventing the wider adoption of autonomous agents trained via deep reinforcement learning (RL) is their limited ability to generalise to new environments, even when these share similar characteristics with environments encountered during training. In this work, we investigate how a non-uniform sampling strategy of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents, considering two failure modes: overfitting and over-generalisation. As a first step, we measure the mutual information (MI) between the agent's internal representation and the set of training levels, which we find to be well-correlated to instance overfitting. In contrast to uniform sampling, adaptive sampling strategies prioritising levels based on their value loss are more effective at maintaining lower MI, which provides a novel theoretical justification for this class of techniques. We then turn our attention to unsupervised environment design (UED) methods, which adaptively generate new training levels and minimise MI more effectively than methods sampling from a fixed set. However, we find UED methods significantly shift the training distribution, resulting in over-generalisation and worse ZSG performance over the distribution of interest. To prevent both instance overfitting and over-generalisation, we introduce self-supervised environment design (SSED). SSED generates levels using a variational autoencoder, effectively reducing MI while minimising the shift with the distribution of interest, and leads to statistically significant improvements in ZSG over fixed-set level sampling strategies and UED methods.