Gao, Shangqian
Momentum-Based Policy Gradient Methods
Huang, Feihu, Gao, Shangqian, Pei, Jian, Huang, Heng
In the paper, we propose a class of efficient momentum-based policy gradient methods for the model-free reinforcement learning, which use adaptive learning rates and do not require any large batches. Specifically, we propose a fast important-sampling momentum-based policy gradient (IS-MBPG) method based on a new momentum-based variance reduced technique and the importance sampling technique. We also propose a fast Hessian-aided momentum-based policy gradient (HA-MBPG) method based on the momentum-based variance reduced technique and the Hessian-aided technique. Moreover, we prove that both the IS-MBPG and HA-MBPG methods reach the best known sample complexity of $O(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of the non-concave performance function, which only require one trajectory at each iteration. In particular, we present a non-adaptive version of IS-MBPG method, i.e., IS-MBPG*, which also reaches the best known sample complexity of $O(\epsilon^{-3})$ without any large batches. In the experiments, we apply four benchmark tasks to demonstrate the effectiveness of our algorithms.
Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query Complexity
Huang, Feihu, Gao, Shangqian, Pei, Jian, Huang, Heng
Zeroth-order (gradient-free) method is a class of powerful optimization tool for many machine learning problems because it only needs function values (not gradient) in the optimization. In particular, zeroth-order method is very suitable for many complex problems such as black-box attacks and bandit feedback, whose explicit gradients are difficult or infeasible to obtain. Recently, although many zeroth-order methods have been developed, these approaches still exist two main drawbacks: 1) high function query complexity; 2) not being well suitable for solving the problems with complex penalties and constraints. To address these challenging drawbacks, in this paper, we propose a novel fast zeroth-order stochastic alternating direction method of multipliers (ADMM) method (\emph{i.e.}, ZO-SPIDER-ADMM) with lower function query complexity for solving nonconvex problems with multiple nonsmooth penalties. Moreover, we prove that our ZO-SPIDER-ADMM has the optimal function query complexity of $O(dn + dn^{\frac{1}{2}}\epsilon^{-1})$ for finding an $\epsilon$-approximate local solution, where $n$ and $d$ denote the sample size and dimension of data, respectively. In particular, the ZO-SPIDER-ADMM improves the existing best nonconvex zeroth-order ADMM methods by a factor of $O(d^{\frac{1}{3}}n^{\frac{1}{6}})$. Moreover, we propose a fast online ZO-SPIDER-ADMM (\emph{i.e.,} ZOO-SPIDER-ADMM). Our theoretical analysis shows that the ZOO-SPIDER-ADMM has the function query complexity of $O(d\epsilon^{-\frac{3}{2}})$, which improves the existing best result by a factor of $O(\epsilon^{-\frac{1}{2}})$. Finally, we utilize a task of structured adversarial attack on black-box deep neural networks to demonstrate the efficiency of our algorithms.
Zeroth-Order Stochastic Alternating Direction Method of Multipliers for Nonconvex Nonsmooth Optimization
Huang, Feihu, Gao, Shangqian, Chen, Songcan, Huang, Heng
Alternating direction method of multipliers (ADMM) is a popular optimization tool for the composite and constrained problems in machine learning. However, in many machine learning problems such as black-box attacks and bandit feedback, ADMM could fail because the explicit gradients of these problems are difficult or infeasible to obtain. Zeroth-order (gradient-free) methods can effectively solve these problems due to that the objective function values are only required in the optimization. Recently, though there exist a few zeroth-order ADMM methods, they build on the convexity of objective function. Clearly, these existing zeroth-order methods are limited in many applications. In the paper, thus, we propose a class of fast zeroth-order stochastic ADMM methods (i.e., ZO-SVRG-ADMM and ZO-SAGA-ADMM) for solving nonconvex problems with multiple nonsmooth penalties, based on the coordinate smoothing gradient estimator. Moreover, we prove that both the ZO-SVRG-ADMM and ZO-SAGA-ADMM have convergence rate of $O(1/T)$, where $T$ denotes the number of iterations. In particular, our methods not only reach the best convergence rate $O(1/T)$ for the nonconvex optimization, but also are able to effectively solve many complex machine learning problems with multiple regularized penalties and constraints. Finally, we conduct the experiments of black-box binary classification and structured adversarial attack on black-box deep neural network to validate the efficiency of our algorithms.
Action Prediction From Videos via Memorizing Hard-to-Predict Samples
Kong, Yu (Northeastern University ) | Gao, Shangqian (Northeastern University ) | Sun, Bin (Northeastern University ) | Fu, Yun (Northeastern University)
Action prediction based on video is an important problem in computer vision field with many applications, such as preventing accidents and criminal activities. It's challenging to predict actions at the early stage because of the large variations between early observed videos and complete ones. Besides, intra-class variations cause confusions to the predictors as well. In this paper, we propose a mem-LSTM model to predict actions in the early stage, in which a memory module is introduced to record several "hard-to-predict" samples and a variety of early observations. Our method uses Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM) to model partial observed video input. We augment LSTM with a memory module to remember challenging video instances. With the memory module, our mem-LSTM model not only achieves impressive performance in the early stage but also makes predictions without the prior knowledge of observation ratio. Information in future frames is also utilized using a bi-directional layer of LSTM. Experiments on UCF-101 and Sports-1M datasets show that our method outperforms state-of-the-art methods.
Video Recovery via Learning Variation and Consistency of Images
Huo, Zhouyuan (University of Texas at Arlington) | Gao, Shangqian (Northeastern University) | Cai, Weidong (University of Sydney) | Huang, Heng (University of Texas at Arlington)
Matrix completion algorithms have been popularly used to recover images with missing entries, and they are proved to be very effective. Recent works utilized tensor completion models in video recovery assuming that all video frames are homogeneous and correlated. However, real videos are made up of different episodes or scenes, i.e. heterogeneous. Therefore, a video recovery model which utilizes both video spatiotemporal consistency and variation is necessary. To solve this problem, we propose a new video recovery method Sectional Trace Norm with Variation and Consistency Constraints (STN-VCC). In our model, capped L1-norm regularization is utilized to learn the spatial-temporal consistency and variation between consecutive frames in video clips. Meanwhile, we introduce a new low-rank model to capture the low-rank structure in video frames with a better approximation of rank minimization than traditional trace norm. An efficient optimization algorithm is proposed, and we also provide a proof of convergence in the paper. We evaluate the proposed method via several video recovery tasks and experiment results show that our new method consistently outperforms other related approaches.