Gao, Ge
Emojis Decoded: Leveraging ChatGPT for Enhanced Understanding in Social Media Communications
Zhou, Yuhang, Xu, Paiheng, Wang, Xiyao, Lu, Xuan, Gao, Ge, Ai, Wei
Emojis, which encapsulate semantics beyond mere words or phrases, have become prevalent in social network communications. This has spurred increasing scholarly interest in exploring their attributes and functionalities. However, emoji-related research and application face two primary challenges. First, researchers typically rely on crowd-sourcing to annotate emojis in order to understand their sentiments, usage intentions, and semantic meanings. Second, subjective interpretations by users can often lead to misunderstandings of emojis and cause the communication barrier. Large Language Models (LLMs) have achieved significant success in various annotation tasks, with ChatGPT demonstrating expertise across multiple domains. In our study, we assess ChatGPT's effectiveness in handling previously annotated and downstream tasks. Our objective is to validate the hypothesis that ChatGPT can serve as a viable alternative to human annotators in emoji research and that its ability to explain emoji meanings can enhance clarity and transparency in online communications. Our findings indicate that ChatGPT has extensive knowledge of emojis. It is adept at elucidating the meaning of emojis across various application scenarios and demonstrates the potential to replace human annotators in a range of tasks.
Continually Improving Extractive QA via Human Feedback
Gao, Ge, Chen, Hung-Ting, Artzi, Yoav, Choi, Eunsol
We study continually improving an extractive question answering (QA) system via human user feedback. We design and deploy an iterative approach, where information-seeking users ask questions, receive model-predicted answers, and provide feedback. We conduct experiments involving thousands of user interactions under diverse setups to broaden the understanding of learning from feedback over time. Our experiments show effective improvement from user feedback of extractive QA models over time across different data regimes, including significant potential for domain adaptation.
Physician Detection of Clinical Harm in Machine Translation: Quality Estimation Aids in Reliance and Backtranslation Identifies Critical Errors
Mehandru, Nikita, Agrawal, Sweta, Xiao, Yimin, Khoong, Elaine C, Gao, Ge, Carpuat, Marine, Salehi, Niloufar
A major challenge in the practical use of Machine Translation (MT) is that users lack guidance to make informed decisions about when to rely on outputs. Progress in quality estimation research provides techniques to automatically assess MT quality, but these techniques have primarily been evaluated in vitro by comparison against human judgments outside of a specific context of use. This paper evaluates quality estimation feedback in vivo with a human study simulating decision-making in high-stakes medical settings. Using Emergency Department discharge instructions, we study how interventions based on quality estimation versus backtranslation assist physicians in deciding whether to show MT outputs to a patient. We find that quality estimation improves appropriate reliance on MT, but backtranslation helps physicians detect more clinically harmful errors that QE alone often misses.
Off-Policy Evaluation for Human Feedback
Gao, Qitong, Gao, Ge, Dong, Juncheng, Tarokh, Vahid, Chi, Min, Pajic, Miroslav
Off-policy evaluation (OPE) is important for closing the gap between offline training and evaluation of reinforcement learning (RL), by estimating performance and/or rank of target (evaluation) policies using offline trajectories only. It can improve the safety and efficiency of data collection and policy testing procedures in situations where online deployments are expensive, such as healthcare. However, existing OPE methods fall short in estimating human feedback (HF) signals, as HF may be conditioned over multiple underlying factors and is only sparsely available; as opposed to the agent-defined environmental rewards (used in policy optimization), which are usually determined over parametric functions or distributions. Consequently, the nature of HF signals makes extrapolating accurate OPE estimations to be challenging. To resolve this, we introduce an OPE for HF (OPEHF) framework that revives existing OPE methods in order to accurately evaluate the HF signals. Specifically, we develop an immediate human reward (IHR) reconstruction approach, regularized by environmental knowledge distilled in a latent space that captures the underlying dynamics of state transitions as well as issuing HF signals. Our approach has been tested over two real-world experiments, adaptive in-vivo neurostimulation and intelligent tutoring, as well as in a simulation environment (visual Q&A). Results show that our approach significantly improves the performance toward estimating HF signals accurately, compared to directly applying (variants of) existing OPE methods.
Policy-Gradient Training of Language Models for Ranking
Gao, Ge, Chang, Jonathan D., Cardie, Claire, Brantley, Kiantรฉ, Joachim, Thorsten
Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.
Emoji Promotes Developer Participation and Issue Resolution on GitHub
Zhou, Yuhang, Lu, Xuan, Gao, Ge, Mei, Qiaozhu, Ai, Wei
Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
Client Selection in Federated Learning: Principles, Challenges, and Opportunities
Fu, Lei, Zhang, Huanle, Gao, Ge, Zhang, Mi, Liu, Xin
As a privacy-preserving paradigm for training Machine Learning (ML) models, Federated Learning (FL) has received tremendous attention from both industry and academia. In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware configurations. Thus, randomly sampling clients in each training round may not fully exploit the local updates from heterogeneous clients, resulting in lower model accuracy, slower convergence rate, degraded fairness, etc. To tackle the FL client heterogeneity problem, various client selection algorithms have been developed, showing promising performance improvement. In this paper, we systematically present recent advances in the emerging field of FL client selection and its challenges and research opportunities. We hope to facilitate practitioners in choosing the most suitable client selection mechanisms for their applications, as well as inspire researchers and newcomers to better understand this exciting research topic.
An Offline Time-aware Apprenticeship Learning Framework for Evolving Reward Functions
Apprenticeship learning (AL) is a process of inducing effective decision-making policies via observing and imitating experts' demonstrations. Most existing AL approaches, however, are not designed to cope with the evolving reward functions commonly found in human-centric tasks such as healthcare, where offline learning is required. In this paper, we propose an offline Time-aware Hierarchical EM Energy-based Sub-trajectory (THEMES) AL framework to tackle the evolving reward functions in such tasks. The effectiveness of THEMES is evaluated via a challenging task -- sepsis treatment. The experimental results demonstrate that THEMES can significantly outperform competitive state-of-the-art baselines.
Considerations for Minimizing Data Collection Biases for Eliciting Natural Behavior in Human-Robot Interaction
Shrestha, Snehesh, Gao, Ge, Fermuller, Cornelia, Aloimonos, Yiannis
Many of us researchers take extra measures to control for known-unknowns. However, unknown-unknowns can, at best, be negligible, but otherwise, they could produce unreliable data that might have dire consequences in real-life downstream applications. Human-Robot Interaction standards informed by empirical data could save us time and effort and provide us with the path toward the robots of the future. To this end, we share some of our pilot studies, lessons learned, and how they affected the outcome of our experiments. While these aspects might not be publishable in themselves, we hope our work might save time and effort for other researchers towards their research and serve as additional considerations for discussion at the workshop.
HOPE: Human-Centric Off-Policy Evaluation for E-Learning and Healthcare
Gao, Ge, Ju, Song, Ausin, Markel Sanz, Chi, Min
Reinforcement learning (RL) has been extensively researched for enhancing human-environment interactions in various human-centric tasks, including e-learning and healthcare. Since deploying and evaluating policies online are high-stakes in such tasks, off-policy evaluation (OPE) is crucial for inducing effective policies. In human-centric environments, however, OPE is challenging because the underlying state is often unobservable, while only aggregate rewards can be observed (students' test scores or whether a patient is released from the hospital eventually). In this work, we propose a human-centric OPE (HOPE) to handle partial observability and aggregated rewards in such environments. Specifically, we reconstruct immediate rewards from the aggregated rewards considering partial observability to estimate expected total returns. We provide a theoretical bound for the proposed method, and we have conducted extensive experiments in real-world human-centric tasks, including sepsis treatments and an intelligent tutoring system. Our approach reliably predicts the returns of different policies and outperforms state-of-the-art benchmarks using both standard validation methods and human-centric significance tests.