Goto

Collaborating Authors

 Gao, Chao


On AO*, Proof Number Search and Minimax Search

arXiv.org Artificial Intelligence

Alpha-Beta [Knuth and Moore, 1975] style depthfirst We discuss the interconnections between AO*, adversarial search can also be used for this goal, but its unsatisfying game-searching algorithms, e.g., proof practical performance pushed researchers to devise search number search and minimax search. The former algorithms specialized for solving. Proof number search was developed in the context of a general AND/OR (PNS) [Allis, 1994] was developed of such. Together with graph model, while the latter were mostly presented other game-specific advancements, PNS and its variant [Nagai, in game-trees which are sometimes modeled using 2002] have been used for successfully solving a number AND/OR trees. It is thus worth investigating to of games, e.g., Gomoku [Allis, 1994], checkers [Schaeffer et what extent these algorithms are related and how al., 2007].


On Computation Complexity of True Proof Number Search

arXiv.org Artificial Intelligence

We point out that the computation of true \emph{proof} and \emph{disproof} numbers for proof number search in arbitrary directed acyclic graphs is NP-hard, an important theoretical result for proof number search. The proof requires a reduction from SAT, which demonstrates that finding true proof/disproof number for arbitrary DAG is at least as hard as deciding if arbitrary SAT instance is satisfiable, thus NP-hard.


Optimal Full Ranking from Pairwise Comparisons

arXiv.org Machine Learning

We consider the problem of ranking $n$ players from partial pairwise comparison data under the Bradley-Terry-Luce model. For the first time in the literature, the minimax rate of this ranking problem is derived with respect to the Kendall's tau distance that measures the difference between two rank vectors by counting the number of inversions. The minimax rate of ranking exhibits a transition between an exponential rate and a polynomial rate depending on the magnitude of the signal-to-noise ratio of the problem. To the best of our knowledge, this phenomenon is unique to full ranking and has not been seen in any other statistical estimation problem. To achieve the minimax rate, we propose a divide-and-conquer ranking algorithm that first divides the $n$ players into groups of similar skills and then computes local MLE within each group. The optimality of the proposed algorithm is established by a careful approximate independence argument between the two steps.


SDP Achieves Exact Minimax Optimality in Phase Synchronization

arXiv.org Machine Learning

We study the phase synchronization problem with noisy measurements $Y=z^*z^{*H}+\sigma W\in\mathbb{C}^{n\times n}$, where $z^*$ is an $n$-dimensional complex unit-modulus vector and $W$ is a complex-valued Gaussian random matrix. It is assumed that each entry $Y_{jk}$ is observed with probability $p$. We prove that an SDP relaxation of the MLE achieves the error bound $(1+o(1))\frac{\sigma^2}{2np}$ under a normalized squared $\ell_2$ loss. This result matches the minimax lower bound of the problem, and even the leading constant is sharp. The analysis of the SDP is based on an equivalent non-convex programming whose solution can be characterized as a fixed point of the generalized power iteration lifted to a higher dimensional space. This viewpoint unifies the proofs of the statistical optimality of three different methods: MLE, SDP, and generalized power method. The technique is also applied to the analysis of the SDP for $\mathbb{Z}_2$ synchronization, and we achieve the minimax optimal error $\exp\left(-(1-o(1))\frac{np}{2\sigma^2}\right)$ with a sharp constant in the exponent.


Convergence Rates of Empirical Bayes Posterior Distributions: A Variational Perspective

arXiv.org Machine Learning

We study the convergence rates of empirical Bayes posterior distributions for nonparametric and high-dimensional inference. We show that as long as the hyperparameter set is discrete, the empirical Bayes posterior distribution induced by the maximum marginal likelihood estimator can be regarded as a variational approximation to a hierarchical Bayes posterior distribution. This connection between empirical Bayes and variational Bayes allows us to leverage the recent results in the variational Bayes literature, and directly obtains the convergence rates of empirical Bayes posterior distributions from a variational perspective. For a more general hyperparameter set that is not necessarily discrete, we introduce a new technique called "prior decomposition" to deal with prior distributions that can be written as convex combinations of probability measures whose supports are low-dimensional subspaces. This leads to generalized versions of the classical "prior mass and testing" conditions for the convergence rates of empirical Bayes. Our theory is applied to a number of statistical estimation problems including nonparametric density estimation and sparse linear regression.


Partial Recovery for Top-$k$ Ranking: Optimality of MLE and Sub-Optimality of Spectral Method

arXiv.org Machine Learning

Given partially observed pairwise comparison data generated by the Bradley-Terry-Luce (BTL) model, we study the problem of top-$k$ ranking. That is, to optimally identify the set of top-$k$ players. We derive the minimax rate with respect to a normalized Hamming loss. This provides the first result in the literature that characterizes the partial recovery error in terms of the proportion of mistakes for top-$k$ ranking. We also derive the optimal signal to noise ratio condition for the exact recovery of the top-$k$ set. The maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery and optimal exact recovery. On the other hand, we show another popular algorithm, the spectral method, is in general sub-optimal. Our results complement the recent work by Chen et al. (2019) that shows both the MLE and the spectral method achieve the optimal sample complexity for exact recovery. It turns out the leading constants of the sample complexity are different for the two algorithms. Another contribution that may be of independent interest is the analysis of the MLE without any penalty or regularization for the BTL model. This closes an important gap between theory and practice in the literature of ranking.


Model Repair: Robust Recovery of Over-Parameterized Statistical Models

arXiv.org Machine Learning

Traditional robust estimation assumes that the data are corrupted, and studies methods of estimation that are immune to these corruptions or outliers in the data. In contrast, we explore the setting where the data are "clean" but a statistical model is corrupted after it has been estimated using the data. We study methods for recovering the model that do not require re-estimation from scratch, using only the design and not the original response values. The problem of model repair is motivated from several different perspectives. First, it can be formulated as a well-defined statistical problem that is closely related to, but different from, traditional robust estimation, and that deserves study in its own right. From a more practical perspective, modern machine learning practice is increasingly working with very large statistical models. For example, artificial neural networks having several million parameters are now routinely estimated. It is anticipated that neural networks having trillions of parameters will be built in the coming years, and that large models will be increasingly embedded in systems, where they may be subject to errors and corruption of the parameter values. In this setting, the maintenance of models in a fault tolerant manner becomes a concern.


Natural-Logarithm-Rectified Activation Function in Convolutional Neural Networks

arXiv.org Machine Learning

Activation functions play a key role in providing remarkable performance in deep neural networks, and the rectified linear unit (ReLU) is one of the most widely used activation functions. Various new activation functions and improvements on ReLU have been proposed, but each carry performance drawbacks. In this paper, we propose an improved activation function, which we name the natural-logarithm-rectified linear unit (NLReLU). This activation function uses the parametric natural logarithmic transform to improve ReLU and is simply defined as. NLReLU not only retains the sparse activation characteristic of ReLU, but it also alleviates the "dying ReLU" and vanishing gradient problems to some extent. It also reduces the bias shift effect and heteroscedasticity of neuron data distributions among network layers in order to accelerate the learning process. The proposed method was verified across ten convolutional neural networks with different depths for two essential datasets. Experiments illustrate that convolutional neural networks with NLReLU exhibit higher accuracy than those with ReLU, and that NLReLU is comparable to other well-known activation functions. NLReLU provides 0.16% and 2.04% higher classification accuracy on average compared to ReLU when used in shallow convolutional neural networks with the MNIST and CIFAR-10 datasets, respectively. The average accuracy of deep convolutional neural networks with NLReLU is 1.35% higher on average with the CIFAR-10 dataset.


On Hard Exploration for Reinforcement Learning: a Case Study in Pommerman

arXiv.org Artificial Intelligence

How to best explore in domains with sparse, delayed, and deceptive rewards is an important open problem for reinforcement learning (RL). This paper considers one such domain, the recently-proposed multi-agent benchmark of Pommerman. This domain is very challenging for RL --- past work has shown that model-free RL algorithms fail to achieve significant learning without artificially reducing the environment's complexity. In this paper, we illuminate reasons behind this failure by providing a thorough analysis on the hardness of random exploration in Pommerman. While model-free random exploration is typically futile, we develop a model-based automatic reasoning module that can be used for safer exploration by pruning actions that will surely lead the agent to death. We empirically demonstrate that this module can significantly improve learning.


Skynet: A Top Deep RL Agent in the Inaugural Pommerman Team Competition

arXiv.org Artificial Intelligence

The Pommerman Team Environment is a recently proposed benchmark which involves a multi-agent domain with challenges such as partial observability, decentralized execution (without communication), and very sparse and delayed rewards. The inaugural Pommerman Team Competition held at NeurIPS 2018 hosted 25 participants who submitted a team of 2 agents. Our submission nn_team_skynet955_skynet955 won 2nd place of the "learning agents'' category. Our team is composed of 2 neural networks trained with state of the art deep reinforcement learning algorithms and makes use of concepts like reward shaping, curriculum learning, and an automatic reasoning module for action pruning. Here, we describe these elements and additionally we present a collection of open-sourced agents that can be used for training and testing in the Pommerman environment. Code available at: https://github.com/BorealisAI/pommerman-baseline