Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Gagandeep Singh
Fast and Effective Robustness Certification
Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin Vechev
We present a new method and system, called DeepZ, for certifying neural network robustness based on abstract interpretation. Compared to state-of-the-art automated verifiers for neural networks, DeepZ: (i) handles ReLU, Tanh and Sigmoid activation functions, (ii) supports feedforward, convolutional, and residual architectures, (iii) is significantly more scalable and precise, and (iv) and is sound with respect to floating point arithmetic. These benefits are due to carefully designed approximations tailored to the setting of neural networks.
Beyond the Single Neuron Convex Barrier for Neural Network Certification
Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin Vechev
We propose a new parametric framework, called k-ReLU, for computing precise and scalable convex relaxations used to certify neural networks. The key idea is to approximate the output of multiple ReLUs in a layer jointly instead of separately. This joint relaxation captures dependencies between the inputs to different ReLUs in a layer and thus overcomes the convex barrier imposed by the single neuron triangle relaxation and its approximations. The framework is parametric in the number of k ReLUs it considers jointly and can be combined with existing verifiers in order to improve their precision. Our experimental results show that k-ReLU enables significantly more precise certification than existing state-of-the-art verifiers while maintaining scalability.
Fast and Effective Robustness Certification
Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin Vechev