Goto

Collaborating Authors

 Furtlehner, Cyril


Traffic data reconstruction based on Markov random field modeling

arXiv.org Machine Learning

We consider the traffic data reconstruction problem. Suppose we have the traffic data of an entire city that are incomplete because some road data are unobserved. The problem is to reconstruct the unobserved parts of the data. In this paper, we propose a new method to reconstruct incomplete traffic data collected from various traffic sensors. Our approach is based on Markov random field modeling of road traffic. The reconstruction is achieved by using mean-field method and a machine learning method. We numerically verify the performance of our method using realistic simulated traffic data for the real road network of Sendai, Japan.


Local stability of Belief Propagation algorithm with multiple fixed points

arXiv.org Machine Learning

A number of problems in statistical physics and computer science can be expressed as the computation of marginal probabilities over a Markov random field. Belief propagation, an iterative message-passing algorithm, computes exactly such marginals when the underlying graph is a tree. But it has gained its popularity as an efficient way to approximate them in the more general case, even if it can exhibits multiple fixed points and is not guaranteed to converge. In this paper, we express a new sufficient condition for local stability of a belief propagation fixed point in terms of the graph structure and the beliefs values at the fixed point. This gives credence to the usual understanding that Belief Propagation performs better on sparse graphs.