Fu, Yanjie
Online POI Recommendation: Learning Dynamic Geo-Human Interactions in Streams
Wang, Dongjie, Liu, Kunpeng, Xiong, Hui, Fu, Yanjie
In this paper, we focus on the problem of modeling dynamic geo-human interactions in streams for online POI recommendations. Specifically, we formulate the in-stream geo-human interaction modeling problem into a novel deep interactive reinforcement learning framework, where an agent is a recommender and an action is a next POI to visit. We uniquely model the reinforcement learning environment as a joint and connected composition of users and geospatial contexts (POIs, POI categories, functional zones). An event that a user visits a POI in stream updates the states of both users and geospatial contexts; the agent perceives the updated environment state to make online recommendations. Specifically, we model a mixed-user event stream by unifying all users, visits, and geospatial contexts as a dynamic knowledge graph stream, in order to model human-human, geo-human, geo-geo interactions. We design an exit mechanism to address the expired information challenge, devise a meta-path method to address the recommendation candidate generation challenge, and develop a new deep policy network structure to address the varying action space challenge, and, finally, propose an effective adversarial training method for optimization. Finally, we present extensive experiments to demonstrate the enhanced performance of our method.
Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation
Wang, Dongjie, Fu, Yanjie, Liu, Kunpeng, Chen, Fanglan, Wang, Pengyang, Lu, Chang-Tien
Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: 1) how to define a quantitative land-use configuration? 2) how to automate configuration planning? 3) how to evaluate the quality of a generated configuration? In this paper, we systematically address the three challenges. Specifically, 1) We define a land-use configuration as a longitude-latitude-channel tensor. 2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. 3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.
Reinforced Imitative Graph Representation Learning for Mobile User Profiling: An Adversarial Training Perspective
Wang, Dongjie, Wang, Pengyang, Liu, Kunpeng, Zhou, Yuanchun, Hughes, Charles, Fu, Yanjie
In this paper, we study the problem of mobile user profiling, which is a critical component for quantifying users' characteristics in the human mobility modeling pipeline. Human mobility is a sequential decision-making process dependent on the users' dynamic interests. With accurate user profiles, the predictive model can perfectly reproduce users' mobility trajectories. In the reverse direction, once the predictive model can imitate users' mobility patterns, the learned user profiles are also optimal. Such intuition motivates us to propose an imitation-based mobile user profiling framework by exploiting reinforcement learning, in which the agent is trained to precisely imitate users' mobility patterns for optimal user profiles. Specifically, the proposed framework includes two modules: (1) representation module, which produces state combining user profiles and spatio-temporal context in real-time; (2) imitation module, where Deep Q-network (DQN) imitates the user behavior (action) based on the state that is produced by the representation module. However, there are two challenges in running the framework effectively. First, epsilon-greedy strategy in DQN makes use of the exploration-exploitation trade-off by randomly pick actions with the epsilon probability. Such randomness feeds back to the representation module, causing the learned user profiles unstable. To solve the problem, we propose an adversarial training strategy to guarantee the robustness of the representation module. Second, the representation module updates users' profiles in an incremental manner, requiring integrating the temporal effects of user profiles. Inspired by Long-short Term Memory (LSTM), we introduce a gated mechanism to incorporate new and old user characteristics into the user profile.
Interactive Reinforcement Learning for Feature Selection with Decision Tree in the Loop
Fan, Wei, Liu, Kunpeng, Liu, Hao, Ge, Yong, Xiong, Hui, Fu, Yanjie
We study the problem of balancing effectiveness and efficiency in automated feature selection. After exploring many feature selection methods, we observe a computational dilemma: 1) traditional feature selection is mostly efficient, but difficult to identify the best subset; 2) the emerging reinforced feature selection automatically navigates to the best subset, but is usually inefficient. Can we bridge the gap between effectiveness and efficiency under automation? Motivated by this dilemma, we aim to develop a novel feature space navigation method. In our preliminary work, we leveraged interactive reinforcement learning to accelerate feature selection by external trainer-agent interaction. In this journal version, we propose a novel interactive and closed-loop architecture to simultaneously model interactive reinforcement learning (IRL) and decision tree feedback (DTF). Specifically, IRL is to create an interactive feature selection loop and DTF is to feed structured feature knowledge back to the loop. First, the tree-structured feature hierarchy from decision tree is leveraged to improve state representation. In particular, we represent the selected feature subset as an undirected graph of feature-feature correlations and a directed tree of decision features. We propose a new embedding method capable of empowering graph convolutional network to jointly learn state representation from both the graph and the tree. Second, the tree-structured feature hierarchy is exploited to develop a new reward scheme. In particular, we personalize reward assignment of agents based on decision tree feature importance. In addition, observing agents' actions can be feedback, we devise another reward scheme, to weigh and assign reward based on the feature selected frequency ratio in historical action records. Finally, we present extensive experiments on real-world datasets to show the improved performance.
Simplifying Reinforced Feature Selection via Restructured Choice Strategy of Single Agent
Zhao, Xiaosa, Liu, Kunpeng, Fan, Wei, Jiang, Lu, Zhao, Xiaowei, Yin, Minghao, Fu, Yanjie
Feature selection aims to select a subset of features to optimize the performances of downstream predictive tasks. Recently, multi-agent reinforced feature selection (MARFS) has been introduced to automate feature selection, by creating agents for each feature to select or deselect corresponding features. Although MARFS enjoys the automation of the selection process, MARFS suffers from not just the data complexity in terms of contents and dimensionality, but also the exponentially-increasing computational costs with regard to the number of agents. The raised concern leads to a new research question: Can we simplify the selection process of agents under reinforcement learning context so as to improve the efficiency and costs of feature selection? To address the question, we develop a single-agent reinforced feature selection approach integrated with restructured choice strategy. Specifically, the restructured choice strategy includes: 1) we exploit only one single agent to handle the selection task of multiple features, instead of using multiple agents. 2) we develop a scanning method to empower the single agent to make multiple selection/deselection decisions in each round of scanning. 3) we exploit the relevance to predictive labels of features to prioritize the scanning orders of the agent for multiple features. 4) we propose a convolutional auto-encoder algorithm, integrated with the encoded index information of features, to improve state representation. 5) we design a reward scheme that take into account both prediction accuracy and feature redundancy to facilitate the exploration process. Finally, we present extensive experimental results to demonstrate the efficiency and effectiveness of the proposed method.
AutoFS: Automated Feature Selection via Diversity-aware Interactive Reinforcement Learning
Fan, Wei, Liu, Kunpeng, Liu, Hao, Wang, Pengyang, Ge, Yong, Fu, Yanjie
In this paper, we study the problem of balancing effectiveness and efficiency in automated feature selection. Feature selection is a fundamental intelligence for machine learning and predictive analysis. After exploring many feature selection methods, we observe a computational dilemma: 1) traditional feature selection methods (e.g., mRMR) are mostly efficient, but difficult to identify the best subset; 2) the emerging reinforced feature selection methods automatically navigate feature space to explore the best subset, but are usually inefficient. Are automation and efficiency always apart from each other? Can we bridge the gap between effectiveness and efficiency under automation? Motivated by such a computational dilemma, this study is to develop a novel feature space navigation method. To that end, we propose an Interactive Reinforced Feature Selection (IRFS) framework that guides agents by not just self-exploration experience, but also diverse external skilled trainers to accelerate learning for feature exploration. Specifically, we formulate the feature selection problem into an interactive reinforcement learning framework. In this framework, we first model two trainers skilled at different searching strategies: (1) KBest based trainer; (2) Decision Tree based trainer. We then develop two strategies: (1) to identify assertive and hesitant agents to diversify agent training, and (2) to enable the two trainers to take the teaching role in different stages to fuse the experiences of the trainers and diversify teaching process. Such a hybrid teaching strategy can help agents to learn broader knowledge, and, thereafter, be more effective. Finally, we present extensive experiments on real-world datasets to demonstrate the improved performances of our method: more efficient than existing reinforced selection and more effective than classic selection.
Learning Adaptive Embedding Considering Incremental Class
Yang, Yang, Sun, Zhen-Qiang, Zhu, HengShu, Fu, Yanjie, Xiong, Hui, Yang, Jian
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially. Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection. The initial training data only contains incomplete classes, and streaming test data will accept unknown classes. Therefore, the model needs to not only accurately classify known classes, but also effectively detect unknown classes; 2) Model expansion. After the novel classes are detected, the model needs to be updated without re-training using entire previous data. However, traditional CIL methods have not fully considered these two challenges, first, they are always restricted to single novel class detection each phase and embedding confusion caused by unknown classes. Besides, they also ignore the catastrophic forgetting of known categories in model update. To this end, we propose a Class-Incremental Learning without Forgetting (CILF) framework, which aims to learn adaptive embedding for processing novel class detection and model update in a unified framework. In detail, CILF designs to regularize classification with decoupled prototype based loss, which can improve the intra-class and inter-class structure significantly, and acquire a compact embedding representation for novel class detection in result. Then, CILF employs a learnable curriculum clustering operator to estimate the number of semantic clusters via fine-tuning the learned network, in which curriculum operator can adaptively learn the embedding in self-taught form. Therefore, CILF can detect multiple novel classes and mitigate the embedding confusion problem. Last, with the labeled streaming test data, CILF can update the network with robust regularization to mitigate the catastrophic forgetting. Consequently, CILF is able to iteratively perform novel class detection and model update.
Reimagining City Configuration: Automated Urban Planning via Adversarial Learning
Wang, Dongjie, Fu, Yanjie, Wang, Pengyang, Huang, Bo, Lu, Chang-Tien
Urban planning refers to the efforts of designing land-use configurations. Effective urban planning can help to mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traffic congestion and accidents, pollution, depression, and anxiety. Due to the high complexity of urban systems, such tasks are mostly completed by professional planners. But, human planners take longer time. The recent advance of deep learning motivates us to ask: can machines learn at a human capability to automatically and quickly calculate land-use configuration, so human planners can finally adjust machine-generated plans for specific needs? To this end, we formulate the automated urban planning problem into a task of learning to configure land-uses, given the surrounding spatial contexts. To set up the task, we define a land-use configuration as a longitude-latitude-channel tensor, where each channel is a category of POIs and the value of an entry is the number of POIs. The objective is then to propose an adversarial learning framework that can automatically generate such tensor for an unplanned area. In particular, we first characterize the contexts of surrounding areas of an unplanned area by learning representations from spatial graphs using geographic and human mobility data. Second, we combine each unplanned area and its surrounding context representation as a tuple, and categorize all the tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Third, we develop an adversarial land-use configuration approach, where the surrounding context representation is fed into a generator to generate a land-use configuration, and a discriminator learns to distinguish among positive and negative samples.
Polestar: An Intelligent, Efficient and National-Wide Public Transportation Routing Engine
Liu, Hao, Li, Ying, Fu, Yanjie, Mei, Huaibo, Zhou, Jingbo, Ma, Xu, Xiong, Hui
Public transportation plays a critical role in people's daily life. It has been proven that public transportation is more environmentally sustainable, efficient, and economical than any other forms of travel. However, due to the increasing expansion of transportation networks and more complex travel situations, people are having difficulties in efficiently finding the most preferred route from one place to another through public transportation systems. To this end, in this paper, we present Polestar, a data-driven engine for intelligent and efficient public transportation routing. Specifically, we first propose a novel Public Transportation Graph (PTG) to model public transportation system in terms of various travel costs, such as time or distance. Then, we introduce a general route search algorithm coupled with an efficient station binding method for efficient route candidate generation. After that, we propose a two-pass route candidate ranking module to capture user preferences under dynamic travel situations. Finally, experiments on two real-world data sets demonstrate the advantages of Polestar in terms of both efficiency and effectiveness. Indeed, in early 2019, Polestar has been deployed on Baidu Maps, one of the world's largest map services. To date, Polestar is servicing over 330 cities, answers over a hundred millions of queries each day, and achieves substantial improvement of user click ratio.
Fake News Detection with Deep Diffusive Network Model
Zhang, Jiawei, Cui, Limeng, Fu, Yanjie, Gouza, Fisher B.
In recent years, due to the booming development of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and widespread in the online world. With deceptive words, online social network users can get infected by these online fake news easily, which has brought about tremendous effects on the offline society already. An important goal in improving the trustworthiness of information in online social networks is to identify the fake news timely. This paper aims at investigating the principles, methodologies and algorithms for detecting fake news articles, creators and subjects from online social networks and evaluating the corresponding performance. This paper addresses the challenges introduced by the unknown characteristics of fake news and diverse connections among news articles, creators and subjects. Based on a detailed data analysis, this paper introduces a novel automatic fake news credibility inference model, namely FakeDetector. Based on a set of explicit and latent features extracted from the textual information, FakeDetector builds a deep diffusive network model to learn the representations of news articles, creators and subjects simultaneously. Extensive experiments have been done on a real-world fake news dataset to compare FakeDetector with several state-of-the-art models, and the experimental results have demonstrated the effectiveness of the proposed model.